DenseNet算法:口腔癌识别

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

一 DenseNet算法结构

其基本思路与ResNet一致,但是它建立的是前面所有层和后面层的密集连接,它的另一大特色是通过特征在channel上的连接来实现特征重用。

二 设计理念

三 结构

四 算法代码

python 复制代码
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device
python 复制代码
data_dir = './data/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
classeNames

import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './data/OSCC/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()
python 复制代码
total_datadir = './data/'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data

# 划分训练集
train_size = int(0.7 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
python 复制代码
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
复制代码
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64
python 复制代码
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import re
import torch
from torch.utils import model_zoo
from torchvision.models.video.resnet import model_urls

'''
_DenseLayer 类实现了 DenseNet 的关键机制:
通过使用批归一化、ReLU 激活和卷积层来提取特征,并通过密集连接促进特征的共享和再利用。
'''
class _DenseLayer(nn.Sequential):

    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        '''

        :param num_input_features: 输入特征数
        :param growth_rate: 每层增长的特征数
        :param bn_size: 批归一化层的大小
        :param drop_rate: 丢弃率
        '''
        super(_DenseLayer, self).__init__()
        # 添加一个批归一化层(BatchNorm2d),用于对输入特征进行标准化
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        # 添加一个 ReLU 激活函数
        self.add_module("relu1", nn.ReLU(inplace=True))
        # 添加第一个卷积层(Conv2d),其输入通道数为 num_input_features,输出通道数为 bn_size * growth_rate。
        # 这里使用 1x1 卷积,主要用于减少特征图的维度,并引入更多特征
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size * growth_rate,
                                           kernel_size=1, stride=1, bias=False))
        # 添加第二个批归一化层,应用于第一个卷积层的输出
        self.add_module("norm2", nn.BatchNorm2d(bn_size * growth_rate))
        # 添加第二个 ReLU 激活函数。与第一个激活函数相同,提供非线性变换
        self.add_module("relu2", nn.ReLU(inplace=True))
        # 添加第二个卷积层,输入通道数为 bn_size * growth_rate,输出通道数为 growth_rate。
        # 这里使用 3x3 卷积,通常用于提取更复杂的特征
        self.add_module("conv2", nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False))
        # 保存丢弃率(drop rate),用于在前向传播中进行 dropout 操作,以防止过拟合
        self.drop_rate = drop_rate

    def forward(self, x):
        # 调用父类 nn.Sequential 的 forward 方法,将输入 x 传递给之前添加的所有层。
        # 输出 new_features 是经过所有层处理后的特征
        new_features = super(_DenseLayer, self).forward(x)
        # 检查丢弃率是否大于 0,如果是,则进行 dropout 操作
        if self.drop_rate > 0:
            # 对新特征应用 dropout,p 是丢弃概率,training 参数指示当前是否在训练模式。这将随机将一部分特征置为零,从而帮助减少过拟合
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        # 将输入 x 和新特征 new_features 在通道维度(即维度 1)上连接。这样可以实现密集连接,允许模型利用前面层的所有特征
        return torch.cat([x, new_features], 1)

'''
创建一个包含多个密集层的模块,每个层都会根据前面层的输出特征动态调整输入特征数量,形成一个密集连接的网络结构。
'''
class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        '''
        num_layers: 该密集块中层的数量。
        num_input_features: 输入特征的数量。
        bn_size: 批量归一化的大小。
        growth_rate: 每层输出特征的增长率。
        drop_rate: dropout 率,用于防止过拟合
        '''
        super(_DenseBlock, self).__init__()
        # 开始一个循环,迭代 num_layers 次,为每一层创建一个密集层
        for i in range(num_layers):
            # 在每次迭代中,创建一个新的 _DenseLayer 实例。该层的输入特征数量为 num_input_features + i * growth_rate,即前面所有层的输出特征总和
            layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate)
            # 将创建的密集层添加到模块中,并命名为 denselayer1、denselayer2,依此类推。这样可以方便后续访问和调试
            self.add_module("denselayer%d" % (i + 1,), layer)

'''
构建神经网络的一个过渡层,在神经网络中通常用于特征的转换和下采样
'''
class _Transition(nn.Sequential):
    def __init__(self,num_input_feature,num_output_features):
        super(_Transition,self).__init__()
        # 添加一个批归一化层,标准化输入特征
        self.add_module("norm",nn.BatchNorm2d(num_input_feature))
        # 添加一个 ReLU 激活函数
        self.add_module("relu",nn.ReLU(inplace=True))
        # 添加一个卷积层,使用 1x1 的卷积核,连接输入特征和输出特征。
        self.add_module("conv",nn.Conv2d(num_input_feature,num_output_features,kernel_size=1,
                                         stride=1,bias=False))
        # 添加一个 2x2 的平均池化层,步幅为 2,用于减少特征图的大小
        self.add_module("pool",nn.AvgPool2d(2,stride=2))

class DenseNet(nn.Module):
    def __init__(self,growth_rate=32,block_config=(6,12,24,16),num_init_features=64,
                 bn_size=4,compression_rate=0.5,drop_rate=0,num_classes=1000):
        '''
        growth_rate: 每个DenseBlock中每层输出特征图的增长率。
        block_config: 一个元组,指定每个DenseBlock中的层数。
        num_init_features: 第一层卷积的输出特征数量。
        bn_size: Batch Normalization的大小
        compression_rate: 每个Transition层中输出特征数量的压缩比例。
        drop_rate: Dropout的概率
        num_classes: 最终分类的类别数。
        '''
        super(DenseNet,self).__init__()

        # 第一层卷积
        self.features = nn.Sequential(OrderedDict([
            ("conv0",nn.Conv2d(3,num_init_features,kernel_size=7,stride=2,padding=3,bias=False)),
            ("norm0",nn.BatchNorm2d(num_init_features)),
            ("relu0",nn.ReLU(inplace=True)),
            ("pool0",nn.MaxPool2d(3,stride=2,padding=1))
        ]))

        # DenseBlock
        num_features = num_init_features
        # 遍历block_config,为每个DenseBlock构建模型
        for i,num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers,num_features,bn_size,growth_rate,drop_rate)
            self.features.add_module("denseblock%d"%(i+1),block)
            # 更新当前特征数量,每个DenseBlock后增加num_layers * growth_rate
            num_features += num_layers*growth_rate
            if i != len(block_config) - 1:
                # 定义Transition层,连接DenseBlock,减小特征图尺寸(通过compression_rate
                transition = _Transition(num_features,int(num_features*compression_rate))
                # 将DenseBlock和Transition层添加到模型中
                self.features.add_module("transition%d"%(i+1),transition)
                num_features = int(num_features * compression_rate)

        # final bn+relu
        # 在所有DenseBlock和Transition层之后,添加一个Batch Normalization层和ReLU激活层
        self.features.add_module("norm5",nn.BatchNorm2d(num_features))
        self.features.add_module("relu5",nn.ReLU(inplace=True))

        # classification layer
        # 定义全连接层,将特征映射到类别数
        self.classifier = nn.Linear(num_features,num_classes)

        # 参数初始化
        '''
        遍历所有模块,初始化权重。
        卷积层: 使用Kaiming正态分布初始化。
        BatchNorm层: 将偏置初始化为0,权重初始化为1。
        全连接层: 将偏置初始化为0。
        '''
        for m in self.modules():
            if isinstance(m,nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m,nn.BatchNorm2d):
                nn.init.constant_(m.bias,0)
                nn.init.constant_(m.weight,1)
            elif isinstance(m,nn.Linear):
                nn.init.constant_(m.bias,0)

    def forward(self,x):
        '''
        self.features(x): 将输入x传递通过所有特征层。
        F.avg_pool2d: 在特征图上进行全局平均池化。
        view(features.size(0), -1): 将池化后的特征展平。
        self.classifier(out): 通过分类层得到输出。
        return out: 返回最终的分类结果。
        '''
        features = self.features(x)
        out = F.avg_pool2d(features,7,stride=1).view(features.size(0),-1)
        out = self.classifier(out)
        return out

def densetnet121(pretrained=False, **kwargs):
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=len(classeNames))
    if pretrained:
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        # 从指定的 URL 加载 DenseNet-121 的预训练权重,存储在 state_dict
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                # 创建一个新键,组合匹配结果的前半部分和后半部分
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        # 将处理后的权重加载到模型中
        model.load_state_dict(state_dict)
    return model

model = densetnet121()
model
python 复制代码
import torchsummary as summary
summary.summary(model,(3,224,224))
复制代码
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 112, 112]           9,408
       BatchNorm2d-2         [-1, 64, 112, 112]             128
              ReLU-3         [-1, 64, 112, 112]               0
         MaxPool2d-4           [-1, 64, 56, 56]               0
       BatchNorm2d-5           [-1, 64, 56, 56]             128
              ReLU-6           [-1, 64, 56, 56]               0
            Conv2d-7          [-1, 128, 56, 56]           8,192
       BatchNorm2d-8          [-1, 128, 56, 56]             256
              ReLU-9          [-1, 128, 56, 56]               0
           Conv2d-10           [-1, 32, 56, 56]          36,864
      BatchNorm2d-11           [-1, 96, 56, 56]             192
             ReLU-12           [-1, 96, 56, 56]               0
           Conv2d-13          [-1, 128, 56, 56]          12,288
      BatchNorm2d-14          [-1, 128, 56, 56]             256
             ReLU-15          [-1, 128, 56, 56]               0
           Conv2d-16           [-1, 32, 56, 56]          36,864
      BatchNorm2d-17          [-1, 128, 56, 56]             256
             ReLU-18          [-1, 128, 56, 56]               0
           Conv2d-19          [-1, 128, 56, 56]          16,384
      BatchNorm2d-20          [-1, 128, 56, 56]             256
             ReLU-21          [-1, 128, 56, 56]               0
           Conv2d-22           [-1, 32, 56, 56]          36,864
      BatchNorm2d-23          [-1, 160, 56, 56]             320
             ReLU-24          [-1, 160, 56, 56]               0
           Conv2d-25          [-1, 128, 56, 56]          20,480
      BatchNorm2d-26          [-1, 128, 56, 56]             256
             ReLU-27          [-1, 128, 56, 56]               0
           Conv2d-28           [-1, 32, 56, 56]          36,864
      BatchNorm2d-29          [-1, 192, 56, 56]             384
             ReLU-30          [-1, 192, 56, 56]               0
           Conv2d-31          [-1, 128, 56, 56]          24,576
      BatchNorm2d-32          [-1, 128, 56, 56]             256
             ReLU-33          [-1, 128, 56, 56]               0
           Conv2d-34           [-1, 32, 56, 56]          36,864
      BatchNorm2d-35          [-1, 224, 56, 56]             448
             ReLU-36          [-1, 224, 56, 56]               0
           Conv2d-37          [-1, 128, 56, 56]          28,672
      BatchNorm2d-38          [-1, 128, 56, 56]             256
             ReLU-39          [-1, 128, 56, 56]               0
           Conv2d-40           [-1, 32, 56, 56]          36,864
      BatchNorm2d-41          [-1, 256, 56, 56]             512
             ReLU-42          [-1, 256, 56, 56]               0
           Conv2d-43          [-1, 128, 56, 56]          32,768
        AvgPool2d-44          [-1, 128, 28, 28]               0
      BatchNorm2d-45          [-1, 128, 28, 28]             256
             ReLU-46          [-1, 128, 28, 28]               0
           Conv2d-47          [-1, 128, 28, 28]          16,384
      BatchNorm2d-48          [-1, 128, 28, 28]             256
             ReLU-49          [-1, 128, 28, 28]               0
           Conv2d-50           [-1, 32, 28, 28]          36,864
      BatchNorm2d-51          [-1, 160, 28, 28]             320
             ReLU-52          [-1, 160, 28, 28]               0
           Conv2d-53          [-1, 128, 28, 28]          20,480
      BatchNorm2d-54          [-1, 128, 28, 28]             256
             ReLU-55          [-1, 128, 28, 28]               0
           Conv2d-56           [-1, 32, 28, 28]          36,864
      BatchNorm2d-57          [-1, 192, 28, 28]             384
             ReLU-58          [-1, 192, 28, 28]               0
           Conv2d-59          [-1, 128, 28, 28]          24,576
      BatchNorm2d-60          [-1, 128, 28, 28]             256
             ReLU-61          [-1, 128, 28, 28]               0
           Conv2d-62           [-1, 32, 28, 28]          36,864
      BatchNorm2d-63          [-1, 224, 28, 28]             448
             ReLU-64          [-1, 224, 28, 28]               0
           Conv2d-65          [-1, 128, 28, 28]          28,672
      BatchNorm2d-66          [-1, 128, 28, 28]             256
             ReLU-67          [-1, 128, 28, 28]               0
           Conv2d-68           [-1, 32, 28, 28]          36,864
      BatchNorm2d-69          [-1, 256, 28, 28]             512
             ReLU-70          [-1, 256, 28, 28]               0
           Conv2d-71          [-1, 128, 28, 28]          32,768
      BatchNorm2d-72          [-1, 128, 28, 28]             256
             ReLU-73          [-1, 128, 28, 28]               0
           Conv2d-74           [-1, 32, 28, 28]          36,864
      BatchNorm2d-75          [-1, 288, 28, 28]             576
             ReLU-76          [-1, 288, 28, 28]               0
           Conv2d-77          [-1, 128, 28, 28]          36,864
      BatchNorm2d-78          [-1, 128, 28, 28]             256
             ReLU-79          [-1, 128, 28, 28]               0
           Conv2d-80           [-1, 32, 28, 28]          36,864
      BatchNorm2d-81          [-1, 320, 28, 28]             640
             ReLU-82          [-1, 320, 28, 28]               0
           Conv2d-83          [-1, 128, 28, 28]          40,960
      BatchNorm2d-84          [-1, 128, 28, 28]             256
             ReLU-85          [-1, 128, 28, 28]               0
           Conv2d-86           [-1, 32, 28, 28]          36,864
      BatchNorm2d-87          [-1, 352, 28, 28]             704
             ReLU-88          [-1, 352, 28, 28]               0
           Conv2d-89          [-1, 128, 28, 28]          45,056
      BatchNorm2d-90          [-1, 128, 28, 28]             256
             ReLU-91          [-1, 128, 28, 28]               0
           Conv2d-92           [-1, 32, 28, 28]          36,864
      BatchNorm2d-93          [-1, 384, 28, 28]             768
             ReLU-94          [-1, 384, 28, 28]               0
           Conv2d-95          [-1, 128, 28, 28]          49,152
      BatchNorm2d-96          [-1, 128, 28, 28]             256
             ReLU-97          [-1, 128, 28, 28]               0
           Conv2d-98           [-1, 32, 28, 28]          36,864
      BatchNorm2d-99          [-1, 416, 28, 28]             832
            ReLU-100          [-1, 416, 28, 28]               0
          Conv2d-101          [-1, 128, 28, 28]          53,248
     BatchNorm2d-102          [-1, 128, 28, 28]             256
            ReLU-103          [-1, 128, 28, 28]               0
          Conv2d-104           [-1, 32, 28, 28]          36,864
     BatchNorm2d-105          [-1, 448, 28, 28]             896
            ReLU-106          [-1, 448, 28, 28]               0
          Conv2d-107          [-1, 128, 28, 28]          57,344
     BatchNorm2d-108          [-1, 128, 28, 28]             256
            ReLU-109          [-1, 128, 28, 28]               0
          Conv2d-110           [-1, 32, 28, 28]          36,864
     BatchNorm2d-111          [-1, 480, 28, 28]             960
            ReLU-112          [-1, 480, 28, 28]               0
          Conv2d-113          [-1, 128, 28, 28]          61,440
     BatchNorm2d-114          [-1, 128, 28, 28]             256
            ReLU-115          [-1, 128, 28, 28]               0
          Conv2d-116           [-1, 32, 28, 28]          36,864
     BatchNorm2d-117          [-1, 512, 28, 28]           1,024
            ReLU-118          [-1, 512, 28, 28]               0
          Conv2d-119          [-1, 256, 28, 28]         131,072
       AvgPool2d-120          [-1, 256, 14, 14]               0
     BatchNorm2d-121          [-1, 256, 14, 14]             512
            ReLU-122          [-1, 256, 14, 14]               0
          Conv2d-123          [-1, 128, 14, 14]          32,768
     BatchNorm2d-124          [-1, 128, 14, 14]             256
            ReLU-125          [-1, 128, 14, 14]               0
          Conv2d-126           [-1, 32, 14, 14]          36,864
     BatchNorm2d-127          [-1, 288, 14, 14]             576
            ReLU-128          [-1, 288, 14, 14]               0
          Conv2d-129          [-1, 128, 14, 14]          36,864
     BatchNorm2d-130          [-1, 128, 14, 14]             256
            ReLU-131          [-1, 128, 14, 14]               0
          Conv2d-132           [-1, 32, 14, 14]          36,864
     BatchNorm2d-133          [-1, 320, 14, 14]             640
            ReLU-134          [-1, 320, 14, 14]               0
          Conv2d-135          [-1, 128, 14, 14]          40,960
     BatchNorm2d-136          [-1, 128, 14, 14]             256
            ReLU-137          [-1, 128, 14, 14]               0
          Conv2d-138           [-1, 32, 14, 14]          36,864
     BatchNorm2d-139          [-1, 352, 14, 14]             704
            ReLU-140          [-1, 352, 14, 14]               0
          Conv2d-141          [-1, 128, 14, 14]          45,056
     BatchNorm2d-142          [-1, 128, 14, 14]             256
            ReLU-143          [-1, 128, 14, 14]               0
          Conv2d-144           [-1, 32, 14, 14]          36,864
     BatchNorm2d-145          [-1, 384, 14, 14]             768
            ReLU-146          [-1, 384, 14, 14]               0
          Conv2d-147          [-1, 128, 14, 14]          49,152
     BatchNorm2d-148          [-1, 128, 14, 14]             256
            ReLU-149          [-1, 128, 14, 14]               0
          Conv2d-150           [-1, 32, 14, 14]          36,864
     BatchNorm2d-151          [-1, 416, 14, 14]             832
            ReLU-152          [-1, 416, 14, 14]               0
          Conv2d-153          [-1, 128, 14, 14]          53,248
     BatchNorm2d-154          [-1, 128, 14, 14]             256
            ReLU-155          [-1, 128, 14, 14]               0
          Conv2d-156           [-1, 32, 14, 14]          36,864
     BatchNorm2d-157          [-1, 448, 14, 14]             896
            ReLU-158          [-1, 448, 14, 14]               0
          Conv2d-159          [-1, 128, 14, 14]          57,344
     BatchNorm2d-160          [-1, 128, 14, 14]             256
            ReLU-161          [-1, 128, 14, 14]               0
          Conv2d-162           [-1, 32, 14, 14]          36,864
     BatchNorm2d-163          [-1, 480, 14, 14]             960
            ReLU-164          [-1, 480, 14, 14]               0
          Conv2d-165          [-1, 128, 14, 14]          61,440
     BatchNorm2d-166          [-1, 128, 14, 14]             256
            ReLU-167          [-1, 128, 14, 14]               0
          Conv2d-168           [-1, 32, 14, 14]          36,864
     BatchNorm2d-169          [-1, 512, 14, 14]           1,024
            ReLU-170          [-1, 512, 14, 14]               0
          Conv2d-171          [-1, 128, 14, 14]          65,536
     BatchNorm2d-172          [-1, 128, 14, 14]             256
            ReLU-173          [-1, 128, 14, 14]               0
          Conv2d-174           [-1, 32, 14, 14]          36,864
     BatchNorm2d-175          [-1, 544, 14, 14]           1,088
            ReLU-176          [-1, 544, 14, 14]               0
          Conv2d-177          [-1, 128, 14, 14]          69,632
     BatchNorm2d-178          [-1, 128, 14, 14]             256
            ReLU-179          [-1, 128, 14, 14]               0
          Conv2d-180           [-1, 32, 14, 14]          36,864
     BatchNorm2d-181          [-1, 576, 14, 14]           1,152
            ReLU-182          [-1, 576, 14, 14]               0
          Conv2d-183          [-1, 128, 14, 14]          73,728
     BatchNorm2d-184          [-1, 128, 14, 14]             256
            ReLU-185          [-1, 128, 14, 14]               0
          Conv2d-186           [-1, 32, 14, 14]          36,864
     BatchNorm2d-187          [-1, 608, 14, 14]           1,216
            ReLU-188          [-1, 608, 14, 14]               0
          Conv2d-189          [-1, 128, 14, 14]          77,824
     BatchNorm2d-190          [-1, 128, 14, 14]             256
            ReLU-191          [-1, 128, 14, 14]               0
          Conv2d-192           [-1, 32, 14, 14]          36,864
     BatchNorm2d-193          [-1, 640, 14, 14]           1,280
            ReLU-194          [-1, 640, 14, 14]               0
          Conv2d-195          [-1, 128, 14, 14]          81,920
     BatchNorm2d-196          [-1, 128, 14, 14]             256
            ReLU-197          [-1, 128, 14, 14]               0
          Conv2d-198           [-1, 32, 14, 14]          36,864
     BatchNorm2d-199          [-1, 672, 14, 14]           1,344
            ReLU-200          [-1, 672, 14, 14]               0
          Conv2d-201          [-1, 128, 14, 14]          86,016
     BatchNorm2d-202          [-1, 128, 14, 14]             256
            ReLU-203          [-1, 128, 14, 14]               0
          Conv2d-204           [-1, 32, 14, 14]          36,864
     BatchNorm2d-205          [-1, 704, 14, 14]           1,408
            ReLU-206          [-1, 704, 14, 14]               0
          Conv2d-207          [-1, 128, 14, 14]          90,112
     BatchNorm2d-208          [-1, 128, 14, 14]             256
            ReLU-209          [-1, 128, 14, 14]               0
          Conv2d-210           [-1, 32, 14, 14]          36,864
     BatchNorm2d-211          [-1, 736, 14, 14]           1,472
            ReLU-212          [-1, 736, 14, 14]               0
          Conv2d-213          [-1, 128, 14, 14]          94,208
     BatchNorm2d-214          [-1, 128, 14, 14]             256
            ReLU-215          [-1, 128, 14, 14]               0
          Conv2d-216           [-1, 32, 14, 14]          36,864
     BatchNorm2d-217          [-1, 768, 14, 14]           1,536
            ReLU-218          [-1, 768, 14, 14]               0
          Conv2d-219          [-1, 128, 14, 14]          98,304
     BatchNorm2d-220          [-1, 128, 14, 14]             256
            ReLU-221          [-1, 128, 14, 14]               0
          Conv2d-222           [-1, 32, 14, 14]          36,864
     BatchNorm2d-223          [-1, 800, 14, 14]           1,600
            ReLU-224          [-1, 800, 14, 14]               0
          Conv2d-225          [-1, 128, 14, 14]         102,400
     BatchNorm2d-226          [-1, 128, 14, 14]             256
            ReLU-227          [-1, 128, 14, 14]               0
          Conv2d-228           [-1, 32, 14, 14]          36,864
     BatchNorm2d-229          [-1, 832, 14, 14]           1,664
            ReLU-230          [-1, 832, 14, 14]               0
          Conv2d-231          [-1, 128, 14, 14]         106,496
     BatchNorm2d-232          [-1, 128, 14, 14]             256
            ReLU-233          [-1, 128, 14, 14]               0
          Conv2d-234           [-1, 32, 14, 14]          36,864
     BatchNorm2d-235          [-1, 864, 14, 14]           1,728
            ReLU-236          [-1, 864, 14, 14]               0
          Conv2d-237          [-1, 128, 14, 14]         110,592
     BatchNorm2d-238          [-1, 128, 14, 14]             256
            ReLU-239          [-1, 128, 14, 14]               0
          Conv2d-240           [-1, 32, 14, 14]          36,864
     BatchNorm2d-241          [-1, 896, 14, 14]           1,792
            ReLU-242          [-1, 896, 14, 14]               0
          Conv2d-243          [-1, 128, 14, 14]         114,688
     BatchNorm2d-244          [-1, 128, 14, 14]             256
            ReLU-245          [-1, 128, 14, 14]               0
          Conv2d-246           [-1, 32, 14, 14]          36,864
     BatchNorm2d-247          [-1, 928, 14, 14]           1,856
            ReLU-248          [-1, 928, 14, 14]               0
          Conv2d-249          [-1, 128, 14, 14]         118,784
     BatchNorm2d-250          [-1, 128, 14, 14]             256
            ReLU-251          [-1, 128, 14, 14]               0
          Conv2d-252           [-1, 32, 14, 14]          36,864
     BatchNorm2d-253          [-1, 960, 14, 14]           1,920
            ReLU-254          [-1, 960, 14, 14]               0
          Conv2d-255          [-1, 128, 14, 14]         122,880
     BatchNorm2d-256          [-1, 128, 14, 14]             256
            ReLU-257          [-1, 128, 14, 14]               0
          Conv2d-258           [-1, 32, 14, 14]          36,864
     BatchNorm2d-259          [-1, 992, 14, 14]           1,984
            ReLU-260          [-1, 992, 14, 14]               0
          Conv2d-261          [-1, 128, 14, 14]         126,976
     BatchNorm2d-262          [-1, 128, 14, 14]             256
            ReLU-263          [-1, 128, 14, 14]               0
          Conv2d-264           [-1, 32, 14, 14]          36,864
     BatchNorm2d-265         [-1, 1024, 14, 14]           2,048
            ReLU-266         [-1, 1024, 14, 14]               0
          Conv2d-267          [-1, 512, 14, 14]         524,288
       AvgPool2d-268            [-1, 512, 7, 7]               0
     BatchNorm2d-269            [-1, 512, 7, 7]           1,024
            ReLU-270            [-1, 512, 7, 7]               0
          Conv2d-271            [-1, 128, 7, 7]          65,536
     BatchNorm2d-272            [-1, 128, 7, 7]             256
            ReLU-273            [-1, 128, 7, 7]               0
          Conv2d-274             [-1, 32, 7, 7]          36,864
     BatchNorm2d-275            [-1, 544, 7, 7]           1,088
            ReLU-276            [-1, 544, 7, 7]               0
          Conv2d-277            [-1, 128, 7, 7]          69,632
     BatchNorm2d-278            [-1, 128, 7, 7]             256
            ReLU-279            [-1, 128, 7, 7]               0
          Conv2d-280             [-1, 32, 7, 7]          36,864
     BatchNorm2d-281            [-1, 576, 7, 7]           1,152
            ReLU-282            [-1, 576, 7, 7]               0
          Conv2d-283            [-1, 128, 7, 7]          73,728
     BatchNorm2d-284            [-1, 128, 7, 7]             256
            ReLU-285            [-1, 128, 7, 7]               0
          Conv2d-286             [-1, 32, 7, 7]          36,864
     BatchNorm2d-287            [-1, 608, 7, 7]           1,216
            ReLU-288            [-1, 608, 7, 7]               0
          Conv2d-289            [-1, 128, 7, 7]          77,824
     BatchNorm2d-290            [-1, 128, 7, 7]             256
            ReLU-291            [-1, 128, 7, 7]               0
          Conv2d-292             [-1, 32, 7, 7]          36,864
     BatchNorm2d-293            [-1, 640, 7, 7]           1,280
            ReLU-294            [-1, 640, 7, 7]               0
          Conv2d-295            [-1, 128, 7, 7]          81,920
     BatchNorm2d-296            [-1, 128, 7, 7]             256
            ReLU-297            [-1, 128, 7, 7]               0
          Conv2d-298             [-1, 32, 7, 7]          36,864
     BatchNorm2d-299            [-1, 672, 7, 7]           1,344
            ReLU-300            [-1, 672, 7, 7]               0
          Conv2d-301            [-1, 128, 7, 7]          86,016
     BatchNorm2d-302            [-1, 128, 7, 7]             256
            ReLU-303            [-1, 128, 7, 7]               0
          Conv2d-304             [-1, 32, 7, 7]          36,864
     BatchNorm2d-305            [-1, 704, 7, 7]           1,408
            ReLU-306            [-1, 704, 7, 7]               0
          Conv2d-307            [-1, 128, 7, 7]          90,112
     BatchNorm2d-308            [-1, 128, 7, 7]             256
            ReLU-309            [-1, 128, 7, 7]               0
          Conv2d-310             [-1, 32, 7, 7]          36,864
     BatchNorm2d-311            [-1, 736, 7, 7]           1,472
            ReLU-312            [-1, 736, 7, 7]               0
          Conv2d-313            [-1, 128, 7, 7]          94,208
     BatchNorm2d-314            [-1, 128, 7, 7]             256
            ReLU-315            [-1, 128, 7, 7]               0
          Conv2d-316             [-1, 32, 7, 7]          36,864
     BatchNorm2d-317            [-1, 768, 7, 7]           1,536
            ReLU-318            [-1, 768, 7, 7]               0
          Conv2d-319            [-1, 128, 7, 7]          98,304
     BatchNorm2d-320            [-1, 128, 7, 7]             256
            ReLU-321            [-1, 128, 7, 7]               0
          Conv2d-322             [-1, 32, 7, 7]          36,864
     BatchNorm2d-323            [-1, 800, 7, 7]           1,600
            ReLU-324            [-1, 800, 7, 7]               0
          Conv2d-325            [-1, 128, 7, 7]         102,400
     BatchNorm2d-326            [-1, 128, 7, 7]             256
            ReLU-327            [-1, 128, 7, 7]               0
          Conv2d-328             [-1, 32, 7, 7]          36,864
     BatchNorm2d-329            [-1, 832, 7, 7]           1,664
            ReLU-330            [-1, 832, 7, 7]               0
          Conv2d-331            [-1, 128, 7, 7]         106,496
     BatchNorm2d-332            [-1, 128, 7, 7]             256
            ReLU-333            [-1, 128, 7, 7]               0
          Conv2d-334             [-1, 32, 7, 7]          36,864
     BatchNorm2d-335            [-1, 864, 7, 7]           1,728
            ReLU-336            [-1, 864, 7, 7]               0
          Conv2d-337            [-1, 128, 7, 7]         110,592
     BatchNorm2d-338            [-1, 128, 7, 7]             256
            ReLU-339            [-1, 128, 7, 7]               0
          Conv2d-340             [-1, 32, 7, 7]          36,864
     BatchNorm2d-341            [-1, 896, 7, 7]           1,792
            ReLU-342            [-1, 896, 7, 7]               0
          Conv2d-343            [-1, 128, 7, 7]         114,688
     BatchNorm2d-344            [-1, 128, 7, 7]             256
            ReLU-345            [-1, 128, 7, 7]               0
          Conv2d-346             [-1, 32, 7, 7]          36,864
     BatchNorm2d-347            [-1, 928, 7, 7]           1,856
            ReLU-348            [-1, 928, 7, 7]               0
          Conv2d-349            [-1, 128, 7, 7]         118,784
     BatchNorm2d-350            [-1, 128, 7, 7]             256
            ReLU-351            [-1, 128, 7, 7]               0
          Conv2d-352             [-1, 32, 7, 7]          36,864
     BatchNorm2d-353            [-1, 960, 7, 7]           1,920
            ReLU-354            [-1, 960, 7, 7]               0
          Conv2d-355            [-1, 128, 7, 7]         122,880
     BatchNorm2d-356            [-1, 128, 7, 7]             256
            ReLU-357            [-1, 128, 7, 7]               0
          Conv2d-358             [-1, 32, 7, 7]          36,864
     BatchNorm2d-359            [-1, 992, 7, 7]           1,984
            ReLU-360            [-1, 992, 7, 7]               0
          Conv2d-361            [-1, 128, 7, 7]         126,976
     BatchNorm2d-362            [-1, 128, 7, 7]             256
            ReLU-363            [-1, 128, 7, 7]               0
          Conv2d-364             [-1, 32, 7, 7]          36,864
     BatchNorm2d-365           [-1, 1024, 7, 7]           2,048
            ReLU-366           [-1, 1024, 7, 7]               0
          Linear-367                    [-1, 2]           2,050
================================================================
Total params: 6,955,906
Trainable params: 6,955,906
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 294.57
Params size (MB): 26.53
Estimated Total Size (MB): 321.68
----------------------------------------------------------------
python 复制代码
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
复制代码
Epoch: 1, Train_acc:47.7%, Train_loss:0.725, Test_acc:47.4%,Test_loss:0.708
Epoch: 2, Train_acc:50.2%, Train_loss:0.697, Test_acc:52.7%,Test_loss:0.690
Epoch: 3, Train_acc:56.1%, Train_loss:0.686, Test_acc:59.9%,Test_loss:0.681
Epoch: 4, Train_acc:58.5%, Train_loss:0.679, Test_acc:60.7%,Test_loss:0.675
Epoch: 5, Train_acc:60.9%, Train_loss:0.673, Test_acc:60.1%,Test_loss:0.671
Epoch: 6, Train_acc:61.7%, Train_loss:0.670, Test_acc:62.6%,Test_loss:0.664
Epoch: 7, Train_acc:62.4%, Train_loss:0.665, Test_acc:63.5%,Test_loss:0.659
Epoch: 8, Train_acc:63.0%, Train_loss:0.660, Test_acc:64.8%,Test_loss:0.653
Epoch: 9, Train_acc:64.2%, Train_loss:0.656, Test_acc:65.5%,Test_loss:0.649
Epoch:10, Train_acc:64.9%, Train_loss:0.652, Test_acc:65.6%,Test_loss:0.644
Epoch:11, Train_acc:65.4%, Train_loss:0.649, Test_acc:66.6%,Test_loss:0.641
Epoch:12, Train_acc:65.0%, Train_loss:0.646, Test_acc:66.6%,Test_loss:0.638
Epoch:13, Train_acc:64.8%, Train_loss:0.643, Test_acc:67.5%,Test_loss:0.634
Epoch:14, Train_acc:65.7%, Train_loss:0.641, Test_acc:67.3%,Test_loss:0.633
Epoch:15, Train_acc:65.9%, Train_loss:0.638, Test_acc:67.8%,Test_loss:0.629
Epoch:16, Train_acc:66.3%, Train_loss:0.635, Test_acc:67.6%,Test_loss:0.626
Epoch:17, Train_acc:67.3%, Train_loss:0.632, Test_acc:67.8%,Test_loss:0.624
Epoch:18, Train_acc:67.1%, Train_loss:0.628, Test_acc:68.2%,Test_loss:0.618
Epoch:19, Train_acc:67.3%, Train_loss:0.628, Test_acc:68.9%,Test_loss:0.618
Epoch:20, Train_acc:67.9%, Train_loss:0.624, Test_acc:68.4%,Test_loss:0.614
Done
python 复制代码
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
相关推荐
minstbe31 分钟前
AI开发 - 算法基础 递归 的概念和入门(二)汉诺塔问题 递归的应用和使用注意 - Python
开发语言·python·算法
TANGLONG2221 小时前
【初阶数据结构与算法】八大排序之非递归系列( 快排(使用栈或队列实现)、归并排序)
java·c语言·数据结构·c++·算法·蓝桥杯·排序算法
不想当程序猿_1 小时前
【蓝桥杯每日一题】与或异或——DFS
c++·算法·蓝桥杯·深度优先
就爱学编程1 小时前
力扣刷题:单链表OJ篇(下)
算法·leetcode·职场和发展
小白—人工智能1 小时前
有一个4*5的矩阵如下,要求编写程序计算总和与平均值,并找出其中值最大的那个元素输出,以及其所在的行号和列号。
数据结构·python·算法·矩阵
邂逅岁月2 小时前
滑不动窗口的秘密—— “滑动窗口“算法 (Java版)
算法·面试·求职招聘·创业创新·刷题
sunny-ll2 小时前
【C++】explicit关键字详解(explicit关键字是什么? 为什么需要explicit关键字? 如何使用explicit 关键字)
c语言·开发语言·c++·算法·面试
轩源源2 小时前
C++草原三剑客之一:继承
开发语言·数据结构·c++·算法·青少年编程·继承·组合
半盏茶香4 小时前
C语言勘破之路-最终篇 —— 预处理(下)
c语言·开发语言·c++·算法
pianmian19 小时前
贪心算法.
算法·贪心算法