最佳语音识别 Whisper-large-v3-turbo 上线,速度更快(本地安装 )

Openai 上线语音模型whisper-large-v3-turbo

在本文中,我们将介绍 whisper-large-v3-turbo 以及 whisper-web(一个直接在浏览器中进行ML语音识别的开源项目)。

尽管近年来出现了许多音频和多模态模型,但Whisper 仍是生产级自动语音识别(ASR)的首选。

Whisper 是一种最先进的自动语音识别 (ASR) 和语音翻译模型,由 OpenAI 的 Alec Radford 等人在论文《 通过大规模弱监督实现稳健语音识别》中提出。

Whisper 模型有两种风格:纯英语和多语言。纯英语模型接受英语语音识别任务的训练。多语言模型同时进行多语言语音识别和语音翻译训练。对于语音识别,该模型会预测与音频相同语言的转录。对于语音翻译,该模型会预测转录为与音频不同的语言。

Whisper 检查点有五种不同型号尺寸的配置。最小的四种语言有纯英语和多语言版本。最大的检查站仅支持多种语言。Hugging Face Hub上提供了所有十个预先训练的检查点。下表总结了检查点:

新推出的 Whisper Turbo 模型是 OpenAI 开发的,经过约 500 万小时的标记数据训练,具有出色的泛化能力。

与其前身 Whisper 大型版本 3 相比,Turbo 版在解码层数上从 32 降至 4,运行速度更快,尽管质量略有下降,但差别非常小。

我们将通过 Hugging Face 本地安装该模型,尝试几个音频文件:

创建一个简单的虚拟环境

安装一些先决条件,包括 Torch、Transformers 等。

现在启动 Jupyter Notebook

Jupyter Notebook 启动后,我们导入所有库,然后获取模型,我们选择 Whisper 大型版本 3 Turbo,然后下载模型并将其放入我们的 CUDA 设备(即 GPU),接着我会初始化这个自动语音识别的管道,提供模型、分词器,并指定我们的 CUDA 设备。

这个模型非常轻量级,不到 2GB。

下载完成后,你只需提供本地音频文件,或者你也可以加载来自 Hugging Face 的任何音频数据集,并进行处理。

正常work:

相关推荐
公众号Codewar原创作者20 分钟前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董36 分钟前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生38 分钟前
机器学习连载
人工智能·机器学习
Trouvaille ~1 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm1 小时前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算
是十一月末1 小时前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空1 小时前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
杭杭爸爸1 小时前
无人直播源码
人工智能·语音识别
Ainnle2 小时前
微软 CEO 萨提亚・纳德拉:回顾过去十年,展望 AI 时代的战略布局
人工智能·microsoft