最佳语音识别 Whisper-large-v3-turbo 上线,速度更快(本地安装 )

Openai 上线语音模型whisper-large-v3-turbo

在本文中,我们将介绍 whisper-large-v3-turbo 以及 whisper-web(一个直接在浏览器中进行ML语音识别的开源项目)。

尽管近年来出现了许多音频和多模态模型,但Whisper 仍是生产级自动语音识别(ASR)的首选。

Whisper 是一种最先进的自动语音识别 (ASR) 和语音翻译模型,由 OpenAI 的 Alec Radford 等人在论文《 通过大规模弱监督实现稳健语音识别》中提出。

Whisper 模型有两种风格:纯英语和多语言。纯英语模型接受英语语音识别任务的训练。多语言模型同时进行多语言语音识别和语音翻译训练。对于语音识别,该模型会预测与音频相同语言的转录。对于语音翻译,该模型会预测转录为与音频不同的语言。

Whisper 检查点有五种不同型号尺寸的配置。最小的四种语言有纯英语和多语言版本。最大的检查站仅支持多种语言。Hugging Face Hub上提供了所有十个预先训练的检查点。下表总结了检查点:

新推出的 Whisper Turbo 模型是 OpenAI 开发的,经过约 500 万小时的标记数据训练,具有出色的泛化能力。

与其前身 Whisper 大型版本 3 相比,Turbo 版在解码层数上从 32 降至 4,运行速度更快,尽管质量略有下降,但差别非常小。

我们将通过 Hugging Face 本地安装该模型,尝试几个音频文件:

创建一个简单的虚拟环境

安装一些先决条件,包括 Torch、Transformers 等。

现在启动 Jupyter Notebook

Jupyter Notebook 启动后,我们导入所有库,然后获取模型,我们选择 Whisper 大型版本 3 Turbo,然后下载模型并将其放入我们的 CUDA 设备(即 GPU),接着我会初始化这个自动语音识别的管道,提供模型、分词器,并指定我们的 CUDA 设备。

这个模型非常轻量级,不到 2GB。

下载完成后,你只需提供本地音频文件,或者你也可以加载来自 Hugging Face 的任何音频数据集,并进行处理。

正常work:

相关推荐
zy_destiny几秒前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪
狠活科技6 分钟前
免登录!免安装ClI,Claude Code官方插件接入API使用教程
人工智能·vscode·ai编程
闲看云起18 分钟前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
韩曙亮1 小时前
【自动驾驶】自动驾驶概述 ⑨ ( 自动驾驶软件系统概述 | 预测系统 | 决策规划 | 控制系统 )
人工智能·机器学习·自动驾驶·激光雷达·决策规划·控制系统·预测系统
深圳南柯电子1 小时前
车载通信设备EMC整改:高频问题与AI辅助诊断方案|深圳南柯电子
网络·人工智能·互联网·实验室·emc
sealaugh322 小时前
AI(学习笔记第十二课) 使用langsmith的agents
人工智能·笔记·学习
科技百宝箱2 小时前
03-AI Agent全栈架构系统化落地指南
人工智能·架构
信息快讯2 小时前
【机器学习赋能的智能光子学器件系统研究与应用】
人工智能·神经网络·机器学习·光学
mit6.8242 小时前
[Agent开发平台] 后端的后端 | MySQL | Redis | RQ | idgen | ObjectStorage
人工智能·python
GIOTTO情3 小时前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构