ad.concat()学习

学习1

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

可以看到,label=batch 只是添加的列名,而不是按照这列合并,而keys的值仅仅是一个标识值,没有特殊含义,我可以用整数区分,我也可以用唯一的字符串区分,如病人名

复制代码
adata_concat = ad.concat(Batch_list, label="slice_name", keys=section_ids)

学习2

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

print(a)
print(b)
print(a.X.toarray())
print(b.X.toarray())

注意这里的ad.concat, 这里的拼接是默认对var取交集的,但是对adata是去并集,也就是说adata的行是增加的,但列是减少的,这个需要特别注意

相关推荐
Larry_Yanan7 小时前
QML学习笔记(三十四)QML的GroupBox、RadioButton
c++·笔记·qt·学习·ui
im_AMBER7 小时前
杂记 14
前端·笔记·学习·web
立志成为大牛的小牛8 小时前
数据结构——十七、线索二叉树找前驱与后继(王道408)
数据结构·笔记·学习·程序人生·考研·算法
张永清-老清9 小时前
每周读书与学习->初识JMeter 元件(五)
学习·jmeter·性能调优·jmeter性能测试·性能分析·干货分享·每周读书与学习
低音钢琴9 小时前
【从零开始构建性能测试体系-02】 Apache JMeter 取样器指南:从入门到精通
学习·jmeter·apache
im_AMBER9 小时前
Web 开发 27
前端·javascript·笔记·后端·学习·web
cimeo9 小时前
【C 学习】12.2-函数补充
学习·c#
微露清风10 小时前
系统性学习C++-第五讲-内存管理
java·c++·学习
小张的博客之旅12 小时前
2025年“羊城杯”网络安全大赛 线上初赛 (WriteUp)
python·学习·网络安全
~无忧花开~13 小时前
JavaScript学习笔记(二十八):JavaScript性能优化全攻略
开发语言·前端·javascript·笔记·学习·性能优化·js