ad.concat()学习

学习1

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

可以看到,label=batch 只是添加的列名,而不是按照这列合并,而keys的值仅仅是一个标识值,没有特殊含义,我可以用整数区分,我也可以用唯一的字符串区分,如病人名

复制代码
adata_concat = ad.concat(Batch_list, label="slice_name", keys=section_ids)

学习2

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

print(a)
print(b)
print(a.X.toarray())
print(b.X.toarray())

注意这里的ad.concat, 这里的拼接是默认对var取交集的,但是对adata是去并集,也就是说adata的行是增加的,但列是减少的,这个需要特别注意

相关推荐
恰薯条的屑海鸥1 小时前
零基础在实践中学习网络安全-皮卡丘靶场(第十六期-SSRF模块)
数据库·学习·安全·web安全·渗透测试·网络安全学习
喜欢吃燃面1 小时前
C++刷题:日期模拟(1)
c++·学习·算法
2301_797604242 小时前
学习记录:DAY32
学习
蓝婷儿3 小时前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
叶子2024223 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
jackson凌3 小时前
【Java学习笔记】SringBuffer类(重点)
java·笔记·学习
黑客老李5 小时前
JavaSec | SpringAOP 链学习分析
java·运维·服务器·开发语言·学习·apache·memcached
海的诗篇_5 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
傍晚冰川6 小时前
FreeRTOS任务调度过程vTaskStartScheduler()&任务设计和划分
开发语言·笔记·stm32·单片机·嵌入式硬件·学习
月初,7 小时前
MongoDB学习和应用(高效的非关系型数据库)
学习·mongodb·nosql