ad.concat()学习

学习1

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

可以看到,label=batch 只是添加的列名,而不是按照这列合并,而keys的值仅仅是一个标识值,没有特殊含义,我可以用整数区分,我也可以用唯一的字符串区分,如病人名

复制代码
adata_concat = ad.concat(Batch_list, label="slice_name", keys=section_ids)

学习2

复制代码
import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

print(a)
print(b)
print(a.X.toarray())
print(b.X.toarray())

注意这里的ad.concat, 这里的拼接是默认对var取交集的,但是对adata是去并集,也就是说adata的行是增加的,但列是减少的,这个需要特别注意

相关推荐
KangkangLoveNLP23 分钟前
手动实现一个迷你Llama:使用SentencePiece实现自己的tokenizer
人工智能·深度学习·学习·算法·transformer·llama
浪淘沙jkp1 小时前
大模型学习二:DeepSeek R1+蒸馏模型组本地部署与调用
学习·deepseek
m0_613607011 小时前
数据集(Dataset)和数据加载器(DataLoader)-pytroch学习3
学习
序属秋秋秋2 小时前
算法基础_基础算法【位运算 + 离散化 + 区间合并】
c语言·c++·学习·算法·蓝桥杯
虾球xz3 小时前
游戏引擎学习第198天
学习·游戏引擎
网络安全指导员4 小时前
如何在JMeter中配置断言,将非200状态码视为测试成功
网络·学习·jmeter·安全·web安全·架构
浪淘沙jkp4 小时前
大模型学习四:‌DeepSeek Janus-Pro 多模态理解和生成模型 本地部署指南(折腾版)
python·学习·deepseek
Kx…………4 小时前
Uni-app入门到精通:uni-app的基础组件
前端·css·学习·uni-app·html
~樱小路~4 小时前
网络:华为数通HCIA学习:IP路由基础
网络·学习·华为
吴梓穆5 小时前
UE5学习笔记 FPS游戏制作42 按钮添加回调函数
笔记·学习·ue5