ad.concat()学习

学习1

import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

可以看到,label=batch 只是添加的列名,而不是按照这列合并,而keys的值仅仅是一个标识值,没有特殊含义,我可以用整数区分,我也可以用唯一的字符串区分,如病人名

adata_concat = ad.concat(Batch_list, label="slice_name", keys=section_ids)

学习2

import anndata as ad, pandas as pd, numpy as np
from scipy import sparse
a = ad.AnnData(
     X=sparse.csr_matrix(np.array([[0, 1], [2, 3]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var1", "var2"]),
     varm={
         "ones": np.ones((2, 5)),
         "rand": np.random.randn(2, 3),
         "zeros": np.zeros((2, 5)),
     },
     uns={"a": 1, "b": 2, "c": {"c.a": 3, "c.b": 4}},
 )
b = ad.AnnData(
     X=sparse.csr_matrix(np.array([[4, 5, 6], [7, 8, 9]])),
     obs=pd.DataFrame(
         {"group": ["b", "c"], "measure": [1.2, 4.3]}, index=["s3", "s4"]
     ),
     var=pd.DataFrame(index=["var1", "var2", "var3"]),
     varm={"ones": np.ones((3, 5)), "rand": np.random.randn(3, 5)},
     uns={"a": 1, "b": 3, "c": {"c.b": 4}},
 )
c = ad.AnnData(
     X=sparse.csr_matrix(np.array([[10, 11], [12, 13]])),
     obs=pd.DataFrame({"group": ["a", "b"]}, index=["s1", "s2"]),
     var=pd.DataFrame(index=["var3", "var4"]),
     uns={"a": 1, "b": 4, "c": {"c.a": 3, "c.b": 4, "c.c": 5}},
 )

print(a)
print(b)
print(a.X.toarray())
print(b.X.toarray())

注意这里的ad.concat, 这里的拼接是默认对var取交集的,但是对adata是去并集,也就是说adata的行是增加的,但列是减少的,这个需要特别注意

相关推荐
地球空间-技术小鱼19 分钟前
YUM(Yellowdog Updater, Modified)和DNF(Dandified YUM)简介
linux·运维·服务器·笔记·学习
小码的头发丝、44 分钟前
Java进阶学习笔记|面向对象
java·笔记·学习
坊钰1 小时前
【Java 数据结构】移除链表元素
java·开发语言·数据结构·学习·链表
阿七想学习2 小时前
数据结构《排序》
java·数据结构·学习·算法·排序算法
汤姆和佩琦5 小时前
2024-12-25-sklearn学习(20)无监督学习-双聚类 料峭春风吹酒醒,微冷,山头斜照却相迎。
学习·聚类·sklearn
好学近乎知o5 小时前
正则表达式(学习Django过程中可能涉及的)
学习·正则表达式·django
雨中奔跑的小孩5 小时前
爬虫学习案例8
爬虫·学习
jieshenai5 小时前
使用 VSCode 学习与实践 LaTeX:从插件安装到排版技巧
ide·vscode·学习
灰太狼不爱写代码8 小时前
CUDA11.4版本的Pytorch下载
人工智能·pytorch·笔记·python·学习
eybk13 小时前
Pytorch+Mumu模拟器+萤石摄像头实现对小孩学习的监控
学习