毕业设计项目 深度学习语义分割实现弹幕防遮(源码分享)

文章目录

  • [0 简介](#0 简介)
  • [1 课题背景](#1 课题背景)
  • [2 技术原理和方法](#2 技术原理和方法)
  • [3 实例分割](#3 实例分割)
  • [4 实现效果](#4 实现效果)
  • 最后

0 简介

今天学长向大家分享一个毕业设计项目

毕业设计 深度学习语义分割实现弹幕防遮(源码分享)

🧿 项目分享:见文末!

1 课题背景

弹幕是显示在视频上的评论,可以以滚动、停留甚至更多动作特效方式出现在视频上,是观看视频的人发送的简短评论。

各大视频网站目前都有弹幕功能,之家也于2020年5月正式上线视频弹幕功能,受到了广大网友的喜爱,大家在观看视频的同时,也能通过弹幕进行互动。

但密集的弹幕,遮挡视频画面,严重影响用户观看体验,如何解决?

查阅了相关视频网站,发现B站推出了一种蒙版弹幕技术,可以让弹幕自动躲避人形区域,达到弹幕不挡人的效果。

B站视频弹幕不挡人的效果

2 技术原理和方法

2.1基本原理

通过AI计算机视觉的技术,对视频内容进行分析,并将之前已经定义好的"视频主体内容"进行识别,生成蒙版并分发给客户端后,让客户端利用 CSS3 的特性进行渲染从而达成最终的效果。这样就形成了我们最终看到的,"不挡脸"弹幕效果。

实现方法就正如 PS 中的"蒙版"一样,实心区域允许,空白区域拒绝,从而达到弹幕不挡人的效果。而技术的核心就在蒙版的生成上,所以将这个功能称之为"蒙版弹幕"。

2.2 技术选型和方法

1、提取视频帧画面。对音视频的处理,大家一般都会想到FFmpeg组件,我们也是使用FFmpeg组件提取每帧的视频画面,使用的是PyAV组件,PyAV是FFmpeg封装,能够灵活的编解码视频和音频,并且支持Python常用的数据格式(如numpy)。

2、识别视频帧画面人像区域。解决方案:使用AI计算机视觉的实例分割技术,可以识别视频帧画面的人像区域。

3、AI框架:目前市面上的AI框架,主要以TensorFlow,PyTorch最流行。

  • TensorFlow :出身豪门的工业界霸主,由Google Brain团队研发。具有如下优点:支持多种编程语言;灵活的架构支持多GPU、分布式训练,跨平台运行能力强;自带TensorBoard组件,能可视化计算图,便于让用户实时监控观察训练过程;官方文档非常详尽,可查询资料众多;社区庞大,大量开发者活跃于此。
  • PyTorch :以动态图崛起的学术界宠儿,是基于Torch 并由Facebook强力支持的python端的开源深度学习库。具有如下优点:简洁:PyTorch 在设计上更直观,追求尽量少的封装,建模过程透明,代码易于理解;易用:应用十分灵活,接口沿用Torch ,契合用户思维,尽可能地让用户实现"所思即所得",不过多顾虑框架本身的束缚;社区:提供完整的文档和指南,用户可以通过全面的教程完成从入门到进阶,有疑问也可以在社区中获得各种及时交流的机会。我们的选择:PyTorch 。原因:TensorFlow 入门难度较大,学习门槛高,系统设计过于复杂;而PyTorch入门难度低,上手快,而且提供的功能也非常易用,预训练模型也非常多。

4、实例分割技术:实例分割(Instance Segmentation)是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。

3 实例分割

简介

实例分割已成为机器视觉研究中比较重要、复杂和具有挑战性的领域之一。为了预测对象类标签和特定于像素的对象实例掩码,它对各种图像中出现的对象实例的不同类进行本地化。实例分割的目的主要是帮助机器人,自动驾驶,监视等。

实例分割同时利用目标检测和语义分割的结果,通过目标检测提供的目标最高置信度类别的索引,将语义分割中目标对应的Mask抽取出来。实例分割顾名思义,就是把一个类别里具体的一个个对象(具体的一个个例子)分割出来。

Mask R-CNN算法

本项目使用Mask R-CNN算法来进行图像实例分割。

网络结构图:

Mask R-CNN,一个相对简单和灵活的实例分割模型。该模型通过目标检测进行了实例分割,同时生成了高质量的掩模。通常,Faster R-CNN有一个用于识别物体边界框的分支。Mask R-CNN并行添加了一个对象蒙版预测分支作为改进。使用FPN主干的head架构如图所示。

关键代码

##利用不同的颜色为每个instance标注出mask,根据box的坐标在instance的周围画上矩形
##根据class_ids来寻找到对于的class_names。三个步骤中的任何一个都可以去掉,比如把mask部分
##去掉,那就只剩下box和label。同时可以筛选出class_ids从而显示制定类别的instance显示,下面
##这段就是用来显示人的,其实也就把人的id选出来,然后记录它们在输入ids中的相对位置,从而得到
##相对应的box与mask的准确顺序
def display_instances_person(image, boxes, masks, class_ids, class_names,
                      scores=None, title="",
                      figsize=(16, 16), ax=None):
    """
    the funtion perform a role for displaying the persons who locate in the image
    boxes: [num_instance, (y1, x1, y2, x2, class_id)] in image coordinates.
    masks: [height, width, num_instances]
    class_ids: [num_instances]
    class_names: list of class names of the dataset
    scores: (optional) confidence scores for each box
    figsize: (optional) the size of the image.
    """
    #compute the number of person
    temp = []
    for i, person in enumerate(class_ids):
        if person == 1:
            temp.append(i)
        else:
            pass
    person_number = len(temp)
    
    person_site = {}
    
    for i in range(person_number):
        person_site[i] = temp[i]
    
    
    NN = boxes.shape[0]   
    # Number of person'instances
    #N = boxes.shape[0]
    N = person_number
    if not N:
        print("\n*** No person to display *** \n")
    else:
       # assert boxes.shape[0] == masks.shape[-1] == class_ids.shape[0]
        pass
 
    if not ax:
        _, ax = plt.subplots(1, figsize=figsize)
 
    # Generate random colors
    colors = random_colors(NN)
 
    # Show area outside image boundaries.
    height, width = image.shape[:2]
    ax.set_ylim(height + 10, -10)
    ax.set_xlim(-10, width + 10)
    ax.axis('off')
    ax.set_title(title)
 
    masked_image = image.astype(np.uint32).copy()
    for a in range(N):
        
        color = colors[a]
        i = person_site[a]
        
 
        # Bounding box
        if not np.any(boxes[i]):
            # Skip this instance. Has no bbox. Likely lost in image cropping.
            continue
        y1, x1, y2, x2 = boxes[i]
        p = patches.Rectangle((x1, y1), x2 - x1, y2 - y1, linewidth=2,
                              alpha=0.7, linestyle="dashed",
                              edgecolor=color, facecolor='none')
        ax.add_patch(p)
 
        # Label
        class_id = class_ids[i]
        score = scores[i] if scores is not None else None
        label = class_names[class_id]
        x = random.randint(x1, (x1 + x2) // 2)
        caption = "{} {:.3f}".format(label, score) if score else label
        ax.text(x1, y1 + 8, caption,
                color='w', size=11, backgroundcolor="none")
        
         # Mask
        mask = masks[:, :, i]
        masked_image = apply_mask(masked_image, mask, color)
 
        # Mask Polygon
        # Pad to ensure proper polygons for masks that touch image edges.
        padded_mask = np.zeros(
            (mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8)
        padded_mask[1:-1, 1:-1] = mask
        contours = find_contours(padded_mask, 0.5)
        for verts in contours:
            # Subtract the padding and flip (y, x) to (x, y)
            verts = np.fliplr(verts) - 1
            p = Polygon(verts, facecolor="none", edgecolor=color)
            ax.add_patch(p)
       
    ax.imshow(masked_image.astype(np.uint8))
    plt.show()

4 实现效果

原视频

生成帧蒙板

最终效果

最后

🧿 项目分享:见文末!

相关推荐
comli_cn4 分钟前
使用清华源安装python包
开发语言·python
赵谨言14 分钟前
基于python 微信小程序的医院就诊小程序
经验分享·python·毕业设计
1.01^100029 分钟前
[1111].集成开发工具Pycharm安装与使用
python·pycharm
HEX9CF30 分钟前
【Django】测试带有 CSRF 验证的 POST 表单 API 报错:Forbidden (CSRF cookie not set.)
python·django·csrf
凡人的AI工具箱1 小时前
每天40分玩转Django:实操多语言博客
人工智能·后端·python·django·sqlite
Py办公羊大侠1 小时前
Excel批量设置行高,Excel表格设置自动换行后打印显示不全,Excel表格设置最合适的行高后打印显示不全,完美解决方案!!!
python·excel·打印·openpyxl·自动换行·显示不全
PieroPc1 小时前
Python tkinter写的《电脑装配单》和 Html版 可打印 可导出 excel 文件
python·html·电脑
Cachel wood1 小时前
Django REST framework (DRF)中的api_view和APIView权限控制
javascript·vue.js·后端·python·ui·django·前端框架
暮色尽染2 小时前
Python 正则表达式
开发语言·python
幽络源小助理2 小时前
Python使用requests_html库爬取掌阅书籍(附完整源码及使用说明)
python·html·python爬虫·爬虫教程·requests_html·爬取书籍·掌阅