DP35 【模板】二维前缀和


文章目录


1.题目

DP35 【模板】二维前缀和

描述

给你一个 n 行 m 列的矩阵 A ,下标从1开始。

接下来有 q 次查询,每次查询输入 4 个参数 x1 , y1 , x2 , y2

请输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和,

输入描述:

第一行包含三个整数n,m,q.

接下来n行,每行m个整数,代表矩阵的元素

接下来q行,每行4个整数x1, y1, x2, y2,分别代表这次查询的参数

输出描述:

输出q行,每行表示查询结果。

示例1

输入:

复制代码
3 4 3
1 2 3 4
3 2 1 0
1 5 7 8
1 1 2 2
1 1 3 3
1 2 3 4

输出:

复制代码
8
25
32

2.思路

暴力解法,时间复杂度为O(n* m *q),二维前缀和时间复杂度为O(m *n)+O(q),

  • 从 [0, 0] 位置到 [i, j] 位置这⽚区域是我们处理的范围
  • 注意,下表边界从1开始,方便计数, 用arr表示而我矩阵,dp 数组一般第 0 行和 第 0 列 的数据是手动初始化,从 arr矩阵到 dp 表,横纵坐标加一
  • dp[i] [j] 的含义:dp[i] [j] 表⽰,从 [1, 1] 位置到 [i, j] 位置这段区域内,所有元素的累加和
  • dp[i] [j] = A + B + C + D

  • 将该式子替换为 dp[i] [j] =(A+C)+(A+B)-A+D

  • A+C 的面积就是 dp[ i ] [ j-1 ] 的值

  • A+B 的面积就是 dp[ i-1 ] [ j ] 的值

  • A 的面积就是 dp[ i-1 ] [ j-1 ] 的值

  • D 的面积就是 arr[ i ] [ j ] 的值

    dp[ i ][ j ] = dp[ i ][ j-1 ] + dp[ i-1 ][ j ] - dp[ i-1 ][ j-1 ] + arr[ i ][ j ]

  • 获取(x1,y1)~(x2,y2)这个区间内的数据总和 x,计算 x = s - A - B - C 的值

  • 修改为x = s - (A+B) - (A+C) + A

  • s 的面就是 dp[ x2 ] [ y2 ]

  • A+B 的面积就是 dp[ x2 ] [ y1-1 ]

  • A+C 的面积就是 dp[ x1-1 ] [ y2 ]

  • A 的面积就是 dp[ x1-1 ] [ y1-1 ]

    x = dp[ x2 ][ y2 ] - dp[ x2 ][ y1-1 ] - dp[ x1-1 ][ y2 ] + dp[ x1-1 ][ y1-1 ]

3.代码

c++ 复制代码
#include <iostream>
#include <vector>
using namespace std;

int main() {
    //1.读取数据
    int n = 0, m = 0, q = 0, x1 = 0, y1 = 0, x2 = 0,
        y2 = 0; //赋初值,养成好习惯
    cin >> n >> m >> q;
    vector<vector<int>> arr(n + 1, vector<int>(m + 1, 0));
    for (int i = 1; i < n + 1; i++) {
        for (int j = 1; j < m + 1; j++) {
            cin >> arr[i][j];
        }
    }

    //2.预处理前缀和矩阵
    vector<vector<long long>> dp(n + 1, vector<long long>(m + 1, 0)); //防止溢出
    for (int i = 1; i < n + 1; i++) {
        for (int j = 1; j < m + 1; j++) {
            dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i - 1][j - 1]+ arr[i][j];
        }
    }

    //3.使用前缀和矩阵
    while (q--) {
        cin >> x1 >> y1 >> x2 >> y2;
        cout << dp[ x2 ][ y2 ] - dp[ x2 ][ y1-1 ] - dp[ x1-1 ][ y2 ] + dp[ x1-1 ][ y1-1 ] <<
             endl;
    }
    return 0;

}

相关推荐
WWZZ202529 分钟前
快速上手大模型:机器学习3(多元线性回归及梯度、向量化、正规方程)
人工智能·算法·机器学习·机器人·slam·具身感知
东方佑1 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
西阳未落2 小时前
LeetCode——二分(进阶)
算法·leetcode·职场和发展
通信小呆呆2 小时前
以矩阵视角统一理解:外积、Kronecker 积与 Khatri–Rao 积(含MATLAB可视化)
线性代数·算法·matlab·矩阵·信号处理
CoderCodingNo3 小时前
【GESP】C++四级真题 luogu-B4068 [GESP202412 四级] Recamán
开发语言·c++·算法
一个不知名程序员www3 小时前
算法学习入门---双指针(C++)
c++·算法
Shilong Wang4 小时前
MLE, MAP, Full Bayes
人工智能·算法·机器学习
Theodore_10224 小时前
机器学习(6)特征工程与多项式回归
深度学习·算法·机器学习·数据分析·多项式回归
知花实央l4 小时前
【算法与数据结构】拓扑排序实战(栈+邻接表+环判断,附可运行代码)
数据结构·算法
lingling0094 小时前
机械臂动作捕捉系统选型指南:从需求到方案,NOKOV 度量光学动捕成优选
人工智能·算法