DP35 【模板】二维前缀和


文章目录


1.题目

DP35 【模板】二维前缀和

描述

给你一个 n 行 m 列的矩阵 A ,下标从1开始。

接下来有 q 次查询,每次查询输入 4 个参数 x1 , y1 , x2 , y2

请输出以 (x1, y1) 为左上角 , (x2,y2) 为右下角的子矩阵的和,

输入描述:

第一行包含三个整数n,m,q.

接下来n行,每行m个整数,代表矩阵的元素

接下来q行,每行4个整数x1, y1, x2, y2,分别代表这次查询的参数

输出描述:

输出q行,每行表示查询结果。

示例1

输入:

复制代码
3 4 3
1 2 3 4
3 2 1 0
1 5 7 8
1 1 2 2
1 1 3 3
1 2 3 4

输出:

复制代码
8
25
32

2.思路

暴力解法,时间复杂度为O(n* m *q),二维前缀和时间复杂度为O(m *n)+O(q),

  • 从 [0, 0] 位置到 [i, j] 位置这⽚区域是我们处理的范围
  • 注意,下表边界从1开始,方便计数, 用arr表示而我矩阵,dp 数组一般第 0 行和 第 0 列 的数据是手动初始化,从 arr矩阵到 dp 表,横纵坐标加一
  • dp[i] [j] 的含义:dp[i] [j] 表⽰,从 [1, 1] 位置到 [i, j] 位置这段区域内,所有元素的累加和
  • dp[i] [j] = A + B + C + D

  • 将该式子替换为 dp[i] [j] =(A+C)+(A+B)-A+D

  • A+C 的面积就是 dp[ i ] [ j-1 ] 的值

  • A+B 的面积就是 dp[ i-1 ] [ j ] 的值

  • A 的面积就是 dp[ i-1 ] [ j-1 ] 的值

  • D 的面积就是 arr[ i ] [ j ] 的值

    dp[ i ][ j ] = dp[ i ][ j-1 ] + dp[ i-1 ][ j ] - dp[ i-1 ][ j-1 ] + arr[ i ][ j ]

  • 获取(x1,y1)~(x2,y2)这个区间内的数据总和 x,计算 x = s - A - B - C 的值

  • 修改为x = s - (A+B) - (A+C) + A

  • s 的面就是 dp[ x2 ] [ y2 ]

  • A+B 的面积就是 dp[ x2 ] [ y1-1 ]

  • A+C 的面积就是 dp[ x1-1 ] [ y2 ]

  • A 的面积就是 dp[ x1-1 ] [ y1-1 ]

    x = dp[ x2 ][ y2 ] - dp[ x2 ][ y1-1 ] - dp[ x1-1 ][ y2 ] + dp[ x1-1 ][ y1-1 ]

3.代码

c++ 复制代码
#include <iostream>
#include <vector>
using namespace std;

int main() {
    //1.读取数据
    int n = 0, m = 0, q = 0, x1 = 0, y1 = 0, x2 = 0,
        y2 = 0; //赋初值,养成好习惯
    cin >> n >> m >> q;
    vector<vector<int>> arr(n + 1, vector<int>(m + 1, 0));
    for (int i = 1; i < n + 1; i++) {
        for (int j = 1; j < m + 1; j++) {
            cin >> arr[i][j];
        }
    }

    //2.预处理前缀和矩阵
    vector<vector<long long>> dp(n + 1, vector<long long>(m + 1, 0)); //防止溢出
    for (int i = 1; i < n + 1; i++) {
        for (int j = 1; j < m + 1; j++) {
            dp[i][j] = dp[i][j-1] + dp[i-1][j] - dp[i - 1][j - 1]+ arr[i][j];
        }
    }

    //3.使用前缀和矩阵
    while (q--) {
        cin >> x1 >> y1 >> x2 >> y2;
        cout << dp[ x2 ][ y2 ] - dp[ x2 ][ y1-1 ] - dp[ x1-1 ][ y2 ] + dp[ x1-1 ][ y1-1 ] <<
             endl;
    }
    return 0;

}

相关推荐
紫陌涵光14 分钟前
54. 替换数字(第八期模拟笔试)
数据结构·c++·算法
TracyCoder12316 分钟前
LeetCode Hot100(53/100)——739. 每日温度
算法·leetcode·职场和发展
_Twink1e16 分钟前
[算法竞赛]二、链表
数据结构·算法·链表
民乐团扒谱机26 分钟前
【读论文】引力与惯性的起源:从全息原理到牛顿定律与爱因斯坦方程
算法·量子力学··万有引力·爱因斯坦方程·全息原理·牛顿定律
努力学算法的蒟蒻29 分钟前
day84(2.13)——leetcode面试经典150
算法·leetcode·面试
@––––––30 分钟前
力扣hot100—系列8-回溯算法
javascript·算法·leetcode
!停32 分钟前
数据结构二叉树—堆(2)&链式结构(上)
数据结构·算法
C++ 老炮儿的技术栈37 分钟前
万物皆文件:Linux 抽象哲学的开发之美
c语言·开发语言·c++·qt·算法
im_AMBER37 分钟前
Leetcode 120 求根节点到叶节点数字之和 | 完全二叉树的节点个数
数据结构·学习·算法·leetcode·二叉树·深度优先
1027lonikitave40 分钟前
FFTW的expr.ml怎么起作用
算法·哈希算法