DHASH感知算法计算视频相邻帧的相似度

一个朋友想用python来读取视频帧,根据帧和帧之间相似度判断剪辑痕迹;但是最后发现并没什么用......

原理就是遍历地读取图像相邻帧,将图像相邻帧前处理后,缩小什么的,计算d_hash,然后计算其汉明距离,然后把汉明距离变成相似度,比较相似度,如果相似度低于阈值,就标记时间什么的

不过我一想,欸!好像可以用来解GIF隐写

我就把代码放这里了

1.处理视频版本的

python 复制代码
import cv2
import numpy as np
from PIL import Image

# Constants
VIDEO_FILE = "faker.mp4"
FRAME_PREFIX = "frame"
FAIL_THRESHOLD = 0.77

def d_hash(image):
    """Calculate the difference hash for the given image."""
    hash_bits = []
    for i in range(8):
        for j in range(8):
            hash_bits.append(1 if image[i, j] > image[i, j + 1] else 0)
    return hash_bits

def hamming_distance(hash1, hash2):
    """Calculate the Hamming distance between two hashes."""
    return sum(1 for x, y in zip(hash1, hash2) if x != y)

def process_frame(frame):
    """Process frame to convert it to a format suitable for hash computation."""
    return np.array(Image.fromarray(frame).resize((9, 8), Image.LANCZOS).convert('L'), 'f')

def main():
    video = cv2.VideoCapture(VIDEO_FILE)
    edit_detected = False

    while True:
        # Read two consecutive frames from the video
        success, frame0 = video.read()
        success1, frame1 = video.read()

        if not success or not success1:
            break

        # Process frames
        frame0_processed = process_frame(frame0)
        frame1_processed = process_frame(frame1)

        # Calculate hashes and distance
        hash0 = d_hash(frame0_processed)
        hash1 = d_hash(frame1_processed)
        distance = hamming_distance(hash0, hash1)
        similarity = 1.0 - distance / 64.0

        # Check similarity against the threshold
        if similarity < FAIL_THRESHOLD:
            msec = video.get(cv2.CAP_PROP_POS_MSEC)
            minute, second = divmod(msec // 1000, 60)
            print(f"{int(minute)} minute {int(second)} second detected with similarity {similarity}")
            edit_detected = True

    if not edit_detected:
        print("No edit detected.")

if __name__ == "__main__":
    main()

2.处理GIF版本的

处理GIF的时候如果遇到相似度过低的帧,就标记出来,而不是时间

python 复制代码
from PIL import Image, ImageSequence
import numpy as np

# Constants
GIF_FILE = "aaa.gif"
FRAME_PREFIX = "frame"
FAIL_THRESHOLD = 0.77

def d_hash(image):
    """Calculate the difference hash for the given image."""
    hash_bits = []
    for i in range(8):
        for j in range(8):
            hash_bits.append(1 if image[i, j] > image[i, j + 1] else 0)
    return hash_bits

def hamming_distance(hash1, hash2):
    """Calculate the Hamming distance between two hashes."""
    return sum(1 for x, y in zip(hash1, hash2) if x != y)

def process_frame(frame):
    """Process frame to convert it to a format suitable for hash computation."""
    return np.array(frame.resize((9, 8), Image.LANCZOS).convert('L'), 'f')

def main():
    gif = Image.open(GIF_FILE)
    frames = [frame.copy() for frame in ImageSequence.Iterator(gif)]
    edit_detected = False
    previous_hash = None

    for index, frame in enumerate(frames):
        # Process frame
        frame_processed = process_frame(frame)

        # Calculate hash
        current_hash = d_hash(frame_processed)

        if previous_hash is not None:
            # Calculate distance and similarity
            distance = hamming_distance(previous_hash, current_hash)
            similarity = 1.0 - distance / 64.0

            # Check similarity against the threshold
            if similarity < FAIL_THRESHOLD:
                print(f"Frame {index} detected with similarity {similarity}")
                edit_detected = True
        
        previous_hash = current_hash

    if not edit_detected:
        print("No edit detected.")

if __name__ == "__main__":
    main()

FAIL_THRESHOLD那里可以调节灵敏度,越高越容易筛选帧对

不过话说回来,好像还是很鸡肋......算了......写都写了

兴许以后有用呢。

相关推荐
花开花落的个人博客42 分钟前
ESP32-S3开发板播放wav音频
音视频
顾道长生'7 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
每次的天空15 小时前
Android-自定义View的实战学习总结
android·学习·kotlin·音视频
爱分享的飘哥17 小时前
【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”
人工智能·音视频
菜包eo18 小时前
二维码驱动的独立站视频集成方案
网络·python·音视频
阿蒙Amon20 小时前
【Python小工具】使用 OpenCV 获取视频时长的详细指南
python·opencv·音视频
aqi001 天前
FFmpeg开发笔记(七十一)使用国产的QPlayer2实现双播放器观看视频
android·ffmpeg·音视频·流媒体
正在走向自律1 天前
第二章-AIGC入门-开启AIGC音频探索之旅:从入门到实践(6/36)
人工智能·aigc·音视频·语音识别·ai音乐·ai 音频·智能语音助手
美狐美颜sdk1 天前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
melonbo1 天前
使用FFmpeg将H.264码流封装为MP4
ffmpeg·音视频·h.264