Multi - LiCa 多激光雷达标定

https://github.com/TUMFTM/Multi_LiCa

Multi - LiCa

Multi - LiDAR-to-LiDAR calibration framework for ROS 2 and non-ROS applications




Introduction

This project provides an extrinsic calibration framework for quickly calibrating multiple LiDAR sensors. It employs the Generalized Iterative Closest Point (GICP) algorithm for LiDAR-to-LiDAR extrinsic calibration and uses the RANdom SAmple Consensus (RANSAC) method to calibrate the pitch and z-distance to the ground of a single LiDAR, assuming other coordinates are known.

It has proven to be robust for different sensor setups and environments without the need of an initial guess.

We use a FPFH-based feature vector creation with an TEASER++ feature matching for the coarse alignment, which is used as initial guess for the GICP algorithm.

Overview

Motion- and targetless multi - LiDAR-to-LiDAR Calibration Pipeline,
developed at the Institute of Automotive Technology, TUM

Limitations

  • Our tool was specifically developed for motionless calibration.
  • We assume that each LiDAR to be calibrated has either a directly overlapping FOV with the target LiDAR FOV or has overlap with other LiDAR(s) with overlap to the target. This can be cascading dependency to the target.
  • We assume that the ground is flat and the environment is static.
  • Input point clouds for the calibration are in sensor_msgs/PointCloud2 or in .pcd format.

Prerequisites

The bare minimum requirement for our tool is a Linux-based OS and Docker, as we provide a Docker image with our framework. You do not need to build anything locally, but you are free to do so as described in the following section. For the local build, you will need ROS 2 - humble, Python 3.10 with opend3d, scipy, ros2_numpy and pandas (optional).

Installation and Usage

🐋 Docker Environment

  1. Build the Docker image:

    复制代码
    ./docker/build_docker.sh
  2. Run the container:

    复制代码
    ./docker/run_docker.sh

🖥 Local Build

  1. Install ROS2 humble (might work with other ROS2 distributions but wasn't tested):
    https://docs.ros.org/en/humble/Installation.html

  2. Create a ROS 2 workspace:

    复制代码
    mkdir -p ~/ros2_ws
    cd ~/ros2_ws
  3. Clone the repository:

    复制代码
    git clone git@github.com:TUMFTM/Multi_LiCa.git
  4. Install dependencies:

    复制代码
    cd Multi_LiCa
    pip install --no-cache-dir --upgrade pip
    pip install --no-cache-dir -r requirements.txt
  5. Source the ROS 2 environment and build the project using colcon:

    复制代码
    source /opt/ros/$ROS_DISTRO/setup.bash
    colcon build --symlink-install --packages-up-to multi_lidar_calibrator --cmake-args -DCMAKE_BUILD_TYPE=Release

⏯️ Usage

  1. Configure the parameters to fit your data:

    复制代码
    vim config/<params-file>.yaml
  2. Launch the multi_lidar_calibrator node:

    复制代码
    ros2 launch multi_lidar_calibrator calibration.launch.py parameter_file:=/path/to/parameter/file

⚙️ Configuration

  • We provided a detailed parameter file with explanation with config/params.yaml

  • Configure config/params.yaml to fit your data. Depending on the application, you may need to specify the LiDARs, paths to .pcd files, or LiDAR topic names. You may also change GICP and RANSAC parameters.

  • In addition to LiDAR-to-LiDAR calibration, you can perform target LiDAR-to-ground/base calibration if your x,y translation and roll, yaw rotation are precisely known.

    If you are using to-base calibration, you may choose a URDF file to save the calibration so that it can be directly used in your ROS robot-state-publisher.

  • When running in a container, ensure that your local and container environments have the same ROS_DOMAIN_ID. If not, set it to be the same with export ROS_DOMAIN_ID=<ID>.

  • When using ROS 2, verify that the transformation guess is published on the /tf_static topic and that the data is published for all specified LiDARs.

🎞️ Demo

On default, the tool will launch a demo with data from OpenCalib.

It will open a window and will display three pointclouds and their initial transforms. You can inspect the files in the interactive window. After closing the window (press Q), the tool will calculate the transformations ans will print the results to the terminal, write them to the output directory and will display a windows with the transformed pointclouds.

Other OSS Calibration Frameworks

相关推荐
moonless02227 分钟前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm
小爷毛毛_卓寿杰7 分钟前
基于大模型与知识图谱的对话引导意图澄清系统技术解析
人工智能·llm
聚客AI17 分钟前
解构高效提示工程:分层模型、文本扩展引擎与可视化调试全链路指南
人工智能·llm·掘金·日新计划
摆烂工程师31 分钟前
Claude Code 落地实践的工作简易流程
人工智能·claude·敏捷开发
亚马逊云开发者32 分钟前
得心应手:探索 MCP 与数据库结合的应用场景
人工智能
大明哥_37 分钟前
100 个 Coze 精品案例 - 小红书爆款图文,单篇点赞 20000+,用 Coze 智能体一键生成有声儿童绘本!
人工智能
聚客AI37 分钟前
🚀拒绝试错成本!企业接入MCP协议的避坑清单
人工智能·掘金·日新计划·mcp
rocksun1 小时前
GraphRAG vs. RAG:差异详解
人工智能
一块plus1 小时前
什么是去中心化 AI?区块链驱动智能的初学者指南
人工智能·后端·算法
txwtech1 小时前
第10.4篇 使用预训练的目标检测网络
人工智能·计算机视觉·目标跟踪