Multi - LiCa 多激光雷达标定

https://github.com/TUMFTM/Multi_LiCa

Multi - LiCa

Multi - LiDAR-to-LiDAR calibration framework for ROS 2 and non-ROS applications




Introduction

This project provides an extrinsic calibration framework for quickly calibrating multiple LiDAR sensors. It employs the Generalized Iterative Closest Point (GICP) algorithm for LiDAR-to-LiDAR extrinsic calibration and uses the RANdom SAmple Consensus (RANSAC) method to calibrate the pitch and z-distance to the ground of a single LiDAR, assuming other coordinates are known.

It has proven to be robust for different sensor setups and environments without the need of an initial guess.

We use a FPFH-based feature vector creation with an TEASER++ feature matching for the coarse alignment, which is used as initial guess for the GICP algorithm.

Overview

Motion- and targetless multi - LiDAR-to-LiDAR Calibration Pipeline,
developed at the Institute of Automotive Technology, TUM

Limitations

  • Our tool was specifically developed for motionless calibration.
  • We assume that each LiDAR to be calibrated has either a directly overlapping FOV with the target LiDAR FOV or has overlap with other LiDAR(s) with overlap to the target. This can be cascading dependency to the target.
  • We assume that the ground is flat and the environment is static.
  • Input point clouds for the calibration are in sensor_msgs/PointCloud2 or in .pcd format.

Prerequisites

The bare minimum requirement for our tool is a Linux-based OS and Docker, as we provide a Docker image with our framework. You do not need to build anything locally, but you are free to do so as described in the following section. For the local build, you will need ROS 2 - humble, Python 3.10 with opend3d, scipy, ros2_numpy and pandas (optional).

Installation and Usage

🐋 Docker Environment

  1. Build the Docker image:

    复制代码
    ./docker/build_docker.sh
  2. Run the container:

    复制代码
    ./docker/run_docker.sh

🖥 Local Build

  1. Install ROS2 humble (might work with other ROS2 distributions but wasn't tested):
    https://docs.ros.org/en/humble/Installation.html

  2. Create a ROS 2 workspace:

    复制代码
    mkdir -p ~/ros2_ws
    cd ~/ros2_ws
  3. Clone the repository:

    复制代码
    git clone git@github.com:TUMFTM/Multi_LiCa.git
  4. Install dependencies:

    复制代码
    cd Multi_LiCa
    pip install --no-cache-dir --upgrade pip
    pip install --no-cache-dir -r requirements.txt
  5. Source the ROS 2 environment and build the project using colcon:

    复制代码
    source /opt/ros/$ROS_DISTRO/setup.bash
    colcon build --symlink-install --packages-up-to multi_lidar_calibrator --cmake-args -DCMAKE_BUILD_TYPE=Release

⏯️ Usage

  1. Configure the parameters to fit your data:

    复制代码
    vim config/<params-file>.yaml
  2. Launch the multi_lidar_calibrator node:

    复制代码
    ros2 launch multi_lidar_calibrator calibration.launch.py parameter_file:=/path/to/parameter/file

⚙️ Configuration

  • We provided a detailed parameter file with explanation with config/params.yaml

  • Configure config/params.yaml to fit your data. Depending on the application, you may need to specify the LiDARs, paths to .pcd files, or LiDAR topic names. You may also change GICP and RANSAC parameters.

  • In addition to LiDAR-to-LiDAR calibration, you can perform target LiDAR-to-ground/base calibration if your x,y translation and roll, yaw rotation are precisely known.

    If you are using to-base calibration, you may choose a URDF file to save the calibration so that it can be directly used in your ROS robot-state-publisher.

  • When running in a container, ensure that your local and container environments have the same ROS_DOMAIN_ID. If not, set it to be the same with export ROS_DOMAIN_ID=<ID>.

  • When using ROS 2, verify that the transformation guess is published on the /tf_static topic and that the data is published for all specified LiDARs.

🎞️ Demo

On default, the tool will launch a demo with data from OpenCalib.

It will open a window and will display three pointclouds and their initial transforms. You can inspect the files in the interactive window. After closing the window (press Q), the tool will calculate the transformations ans will print the results to the terminal, write them to the output directory and will display a windows with the transformed pointclouds.

Other OSS Calibration Frameworks

相关推荐
nkwshuyi5 分钟前
ChatGPT Atlas Agent 如何帮你采集数据和调研?
人工智能·chatgpt
buttonupAI9 分钟前
今日Reddit AI高价值讨论分析 - 10.27
人工智能·chatgpt
rengang6612 分钟前
020-Spring AI Alibaba DashScope Image 功能完整案例
java·人工智能·spring·spring ai·ai应用编程
rengang6615 分钟前
AI驱动的DevOps:AI大模型自动化部署、监控和运维流程
运维·人工智能·ai编程·devops·ai智能体编程
碧海银沙音频科技研究院26 分钟前
ES7243E ADC模拟音频转i2S到 BES I2S1 Master输出播放到SPK精准分析
人工智能·算法·音视频
音视频牛哥28 分钟前
从“十五五”规划看中国视频基础设施的下一个五年:SmartMediaKit 的战略跃迁与时代机遇
人工智能·音视频·大牛直播sdk·十五五规划具身智能·十五五规划音视频·低空经济低延迟音视频方案·具身智能rtsp rtmp
ICscholar30 分钟前
生物突触功能总结
人工智能
深度学习lover43 分钟前
<项目代码>yolo螺丝螺母识别<目标检测>
人工智能·python·深度学习·yolo·目标检测·计算机视觉·螺丝螺母识别
3DVisionary1 小时前
数字图像相关(DIC)技术:汽车板料成形极限(FLC)的精确测量与分析
人工智能·汽车·数字图像相关·材料力学性能·汽车板料成形·成形极限曲线·应变测量
newxtc1 小时前
【重庆政务服务网-注册_登录安全分析报告】
人工智能·selenium·测试工具·安全·政务