Multi - LiCa 多激光雷达标定

https://github.com/TUMFTM/Multi_LiCa

Multi - LiCa

Multi - LiDAR-to-LiDAR calibration framework for ROS 2 and non-ROS applications




Introduction

This project provides an extrinsic calibration framework for quickly calibrating multiple LiDAR sensors. It employs the Generalized Iterative Closest Point (GICP) algorithm for LiDAR-to-LiDAR extrinsic calibration and uses the RANdom SAmple Consensus (RANSAC) method to calibrate the pitch and z-distance to the ground of a single LiDAR, assuming other coordinates are known.

It has proven to be robust for different sensor setups and environments without the need of an initial guess.

We use a FPFH-based feature vector creation with an TEASER++ feature matching for the coarse alignment, which is used as initial guess for the GICP algorithm.

Overview

Motion- and targetless multi - LiDAR-to-LiDAR Calibration Pipeline,
developed at the Institute of Automotive Technology, TUM

Limitations

  • Our tool was specifically developed for motionless calibration.
  • We assume that each LiDAR to be calibrated has either a directly overlapping FOV with the target LiDAR FOV or has overlap with other LiDAR(s) with overlap to the target. This can be cascading dependency to the target.
  • We assume that the ground is flat and the environment is static.
  • Input point clouds for the calibration are in sensor_msgs/PointCloud2 or in .pcd format.

Prerequisites

The bare minimum requirement for our tool is a Linux-based OS and Docker, as we provide a Docker image with our framework. You do not need to build anything locally, but you are free to do so as described in the following section. For the local build, you will need ROS 2 - humble, Python 3.10 with opend3d, scipy, ros2_numpy and pandas (optional).

Installation and Usage

🐋 Docker Environment

  1. Build the Docker image:

    复制代码
    ./docker/build_docker.sh
  2. Run the container:

    复制代码
    ./docker/run_docker.sh

🖥 Local Build

  1. Install ROS2 humble (might work with other ROS2 distributions but wasn't tested):
    https://docs.ros.org/en/humble/Installation.html

  2. Create a ROS 2 workspace:

    复制代码
    mkdir -p ~/ros2_ws
    cd ~/ros2_ws
  3. Clone the repository:

    复制代码
    git clone git@github.com:TUMFTM/Multi_LiCa.git
  4. Install dependencies:

    复制代码
    cd Multi_LiCa
    pip install --no-cache-dir --upgrade pip
    pip install --no-cache-dir -r requirements.txt
  5. Source the ROS 2 environment and build the project using colcon:

    复制代码
    source /opt/ros/$ROS_DISTRO/setup.bash
    colcon build --symlink-install --packages-up-to multi_lidar_calibrator --cmake-args -DCMAKE_BUILD_TYPE=Release

⏯️ Usage

  1. Configure the parameters to fit your data:

    复制代码
    vim config/<params-file>.yaml
  2. Launch the multi_lidar_calibrator node:

    复制代码
    ros2 launch multi_lidar_calibrator calibration.launch.py parameter_file:=/path/to/parameter/file

⚙️ Configuration

  • We provided a detailed parameter file with explanation with config/params.yaml

  • Configure config/params.yaml to fit your data. Depending on the application, you may need to specify the LiDARs, paths to .pcd files, or LiDAR topic names. You may also change GICP and RANSAC parameters.

  • In addition to LiDAR-to-LiDAR calibration, you can perform target LiDAR-to-ground/base calibration if your x,y translation and roll, yaw rotation are precisely known.

    If you are using to-base calibration, you may choose a URDF file to save the calibration so that it can be directly used in your ROS robot-state-publisher.

  • When running in a container, ensure that your local and container environments have the same ROS_DOMAIN_ID. If not, set it to be the same with export ROS_DOMAIN_ID=<ID>.

  • When using ROS 2, verify that the transformation guess is published on the /tf_static topic and that the data is published for all specified LiDARs.

🎞️ Demo

On default, the tool will launch a demo with data from OpenCalib.

It will open a window and will display three pointclouds and their initial transforms. You can inspect the files in the interactive window. After closing the window (press Q), the tool will calculate the transformations ans will print the results to the terminal, write them to the output directory and will display a windows with the transformed pointclouds.

Other OSS Calibration Frameworks

相关推荐
Elastic 中国社区官方博客6 小时前
Elasticsearch:在 X-mas 吃一些更健康的东西
android·大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索
DKHZ_OfficeAI6 小时前
开启AI办公新时代:Office+WPS双平台智能助手全面赋能
人工智能
Coder_Boy_7 小时前
基于SpringAI的智能平台基座开发-(四)
java·人工智能·spring boot·langchain·springai
m0_704887897 小时前
Day46
人工智能
是店小二呀7 小时前
在 AtomGit 昇腾 Atlas 800T上解锁 SGLang:零成本打造高性能推理服务
人工智能·pytorch·深度学习·npu
图生生7 小时前
饰品商拍提效:AI图生图实现白底图转上身图
人工智能·ai
万事可爱^7 小时前
GitCode+昇腾部署Rnj-1模型实践教程
人工智能·深度学习·语言模型·gitcode·本地部署·昇腾npu
高洁017 小时前
图神经网络初探(2)
人工智能·深度学习·算法·机器学习·transformer
njsgcs7 小时前
ai控制鼠标生成刀路系统 环境搭建尝试7 lsd识别刀路线段2
人工智能
哈__7 小时前
实测VLM:昇腾平台上的视觉语言模型测评与优化实践
人工智能·语言模型·自然语言处理·gitcode·sglang