Multi - LiCa 多激光雷达标定

https://github.com/TUMFTM/Multi_LiCa

Multi - LiCa

Multi - LiDAR-to-LiDAR calibration framework for ROS 2 and non-ROS applications




Introduction

This project provides an extrinsic calibration framework for quickly calibrating multiple LiDAR sensors. It employs the Generalized Iterative Closest Point (GICP) algorithm for LiDAR-to-LiDAR extrinsic calibration and uses the RANdom SAmple Consensus (RANSAC) method to calibrate the pitch and z-distance to the ground of a single LiDAR, assuming other coordinates are known.

It has proven to be robust for different sensor setups and environments without the need of an initial guess.

We use a FPFH-based feature vector creation with an TEASER++ feature matching for the coarse alignment, which is used as initial guess for the GICP algorithm.

Overview

Motion- and targetless multi - LiDAR-to-LiDAR Calibration Pipeline,
developed at the Institute of Automotive Technology, TUM

Limitations

  • Our tool was specifically developed for motionless calibration.
  • We assume that each LiDAR to be calibrated has either a directly overlapping FOV with the target LiDAR FOV or has overlap with other LiDAR(s) with overlap to the target. This can be cascading dependency to the target.
  • We assume that the ground is flat and the environment is static.
  • Input point clouds for the calibration are in sensor_msgs/PointCloud2 or in .pcd format.

Prerequisites

The bare minimum requirement for our tool is a Linux-based OS and Docker, as we provide a Docker image with our framework. You do not need to build anything locally, but you are free to do so as described in the following section. For the local build, you will need ROS 2 - humble, Python 3.10 with opend3d, scipy, ros2_numpy and pandas (optional).

Installation and Usage

🐋 Docker Environment

  1. Build the Docker image:

    复制代码
    ./docker/build_docker.sh
  2. Run the container:

    复制代码
    ./docker/run_docker.sh

🖥 Local Build

  1. Install ROS2 humble (might work with other ROS2 distributions but wasn't tested):
    https://docs.ros.org/en/humble/Installation.html

  2. Create a ROS 2 workspace:

    复制代码
    mkdir -p ~/ros2_ws
    cd ~/ros2_ws
  3. Clone the repository:

    复制代码
    git clone git@github.com:TUMFTM/Multi_LiCa.git
  4. Install dependencies:

    复制代码
    cd Multi_LiCa
    pip install --no-cache-dir --upgrade pip
    pip install --no-cache-dir -r requirements.txt
  5. Source the ROS 2 environment and build the project using colcon:

    复制代码
    source /opt/ros/$ROS_DISTRO/setup.bash
    colcon build --symlink-install --packages-up-to multi_lidar_calibrator --cmake-args -DCMAKE_BUILD_TYPE=Release

⏯️ Usage

  1. Configure the parameters to fit your data:

    复制代码
    vim config/<params-file>.yaml
  2. Launch the multi_lidar_calibrator node:

    复制代码
    ros2 launch multi_lidar_calibrator calibration.launch.py parameter_file:=/path/to/parameter/file

⚙️ Configuration

  • We provided a detailed parameter file with explanation with config/params.yaml

  • Configure config/params.yaml to fit your data. Depending on the application, you may need to specify the LiDARs, paths to .pcd files, or LiDAR topic names. You may also change GICP and RANSAC parameters.

  • In addition to LiDAR-to-LiDAR calibration, you can perform target LiDAR-to-ground/base calibration if your x,y translation and roll, yaw rotation are precisely known.

    If you are using to-base calibration, you may choose a URDF file to save the calibration so that it can be directly used in your ROS robot-state-publisher.

  • When running in a container, ensure that your local and container environments have the same ROS_DOMAIN_ID. If not, set it to be the same with export ROS_DOMAIN_ID=<ID>.

  • When using ROS 2, verify that the transformation guess is published on the /tf_static topic and that the data is published for all specified LiDARs.

🎞️ Demo

On default, the tool will launch a demo with data from OpenCalib.

It will open a window and will display three pointclouds and their initial transforms. You can inspect the files in the interactive window. After closing the window (press Q), the tool will calculate the transformations ans will print the results to the terminal, write them to the output directory and will display a windows with the transformed pointclouds.

Other OSS Calibration Frameworks

相关推荐
九年义务漏网鲨鱼2 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间3 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享3 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾3 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码3 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
蹦蹦跳跳真可爱5893 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt
两棵雪松4 小时前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_14 小时前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫4 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain