Multi - LiCa 多激光雷达标定

https://github.com/TUMFTM/Multi_LiCa

Multi - LiCa

Multi - LiDAR-to-LiDAR calibration framework for ROS 2 and non-ROS applications




Introduction

This project provides an extrinsic calibration framework for quickly calibrating multiple LiDAR sensors. It employs the Generalized Iterative Closest Point (GICP) algorithm for LiDAR-to-LiDAR extrinsic calibration and uses the RANdom SAmple Consensus (RANSAC) method to calibrate the pitch and z-distance to the ground of a single LiDAR, assuming other coordinates are known.

It has proven to be robust for different sensor setups and environments without the need of an initial guess.

We use a FPFH-based feature vector creation with an TEASER++ feature matching for the coarse alignment, which is used as initial guess for the GICP algorithm.

Overview

Motion- and targetless multi - LiDAR-to-LiDAR Calibration Pipeline,
developed at the Institute of Automotive Technology, TUM

Limitations

  • Our tool was specifically developed for motionless calibration.
  • We assume that each LiDAR to be calibrated has either a directly overlapping FOV with the target LiDAR FOV or has overlap with other LiDAR(s) with overlap to the target. This can be cascading dependency to the target.
  • We assume that the ground is flat and the environment is static.
  • Input point clouds for the calibration are in sensor_msgs/PointCloud2 or in .pcd format.

Prerequisites

The bare minimum requirement for our tool is a Linux-based OS and Docker, as we provide a Docker image with our framework. You do not need to build anything locally, but you are free to do so as described in the following section. For the local build, you will need ROS 2 - humble, Python 3.10 with opend3d, scipy, ros2_numpy and pandas (optional).

Installation and Usage

🐋 Docker Environment

  1. Build the Docker image:

    复制代码
    ./docker/build_docker.sh
  2. Run the container:

    复制代码
    ./docker/run_docker.sh

🖥 Local Build

  1. Install ROS2 humble (might work with other ROS2 distributions but wasn't tested):
    https://docs.ros.org/en/humble/Installation.html

  2. Create a ROS 2 workspace:

    复制代码
    mkdir -p ~/ros2_ws
    cd ~/ros2_ws
  3. Clone the repository:

    复制代码
    git clone [email protected]:TUMFTM/Multi_LiCa.git
  4. Install dependencies:

    复制代码
    cd Multi_LiCa
    pip install --no-cache-dir --upgrade pip
    pip install --no-cache-dir -r requirements.txt
  5. Source the ROS 2 environment and build the project using colcon:

    复制代码
    source /opt/ros/$ROS_DISTRO/setup.bash
    colcon build --symlink-install --packages-up-to multi_lidar_calibrator --cmake-args -DCMAKE_BUILD_TYPE=Release

⏯️ Usage

  1. Configure the parameters to fit your data:

    复制代码
    vim config/<params-file>.yaml
  2. Launch the multi_lidar_calibrator node:

    复制代码
    ros2 launch multi_lidar_calibrator calibration.launch.py parameter_file:=/path/to/parameter/file

⚙️ Configuration

  • We provided a detailed parameter file with explanation with config/params.yaml

  • Configure config/params.yaml to fit your data. Depending on the application, you may need to specify the LiDARs, paths to .pcd files, or LiDAR topic names. You may also change GICP and RANSAC parameters.

  • In addition to LiDAR-to-LiDAR calibration, you can perform target LiDAR-to-ground/base calibration if your x,y translation and roll, yaw rotation are precisely known.

    If you are using to-base calibration, you may choose a URDF file to save the calibration so that it can be directly used in your ROS robot-state-publisher.

  • When running in a container, ensure that your local and container environments have the same ROS_DOMAIN_ID. If not, set it to be the same with export ROS_DOMAIN_ID=<ID>.

  • When using ROS 2, verify that the transformation guess is published on the /tf_static topic and that the data is published for all specified LiDARs.

🎞️ Demo

On default, the tool will launch a demo with data from OpenCalib.

It will open a window and will display three pointclouds and their initial transforms. You can inspect the files in the interactive window. After closing the window (press Q), the tool will calculate the transformations ans will print the results to the terminal, write them to the output directory and will display a windows with the transformed pointclouds.

Other OSS Calibration Frameworks

相关推荐
AIGC方案21 分钟前
deepseek热度已过?
人工智能·大模型
88号技师21 分钟前
模糊斜率熵Fuzzy Slope entropy+状态分类识别!2024年11月新作登上IEEE Trans顶刊
人工智能·机器学习·分类·数据挖掘·信号处理·故障诊断·信息熵
死磕代码程序媛1 小时前
谷歌25年春季新课:15小时速成机器学习
人工智能·机器学习
有Li1 小时前
弥合多层次差距:用于超声心动图中基于文本引导的标签高效分割的双向循环框架|文献速递-深度学习医疗AI最新文献
人工智能
橙色小博1 小时前
Transformer模型解析与实例:搭建一个自己的预测语言模型
人工智能·深度学习·神经网络·机器学习·transformer
意.远2 小时前
PyTorch实现二维卷积与边缘检测:从原理到实战
人工智能·pytorch·python·深度学习·神经网络·计算机视觉
电报号dapp1192 小时前
2025年智能合约玩法创新白皮书:九大核心模块与收益模型重构Web3经济范式
人工智能·重构·web3·去中心化·区块链·智能合约
三道杠卷胡2 小时前
【AI News | 20250411】每日AI进展
人工智能·python·计算机视觉·语言模型·aigc
汪子熙3 小时前
利用 Trae 开发平面直角坐标系的教学动画
人工智能·trae
区块链蓝海3 小时前
Cables 现已正式启动积分计划 Alpha 阶段,开放早期白名单申请
人工智能·区块链