Pandas

Pandas 是一个开源的 Python 数据分析库,它提供了高性能的数据结构和数据分析工具。Pandas 最初被设计用于处理表格数据,即类似于 Excel 中的数据表,但它的功能远不止于此。Pandas 特别适合于处理结构化数据,例如金融时间序列数据。

主要特点:

DataFrame:Pandas 的核心数据结构,类似于 Excel 中的表格,可以存储不同类型的列。

Series:一维数组,类似于 Excel 中的一列数据。

时间序列:Pandas 提供了处理时间序列的强大工具。

  1. **数据合并**:可以轻松地合并、连接和重塑数据集。

  2. **数据分组**:可以对数据进行分组,并对每个组应用聚合、转换或过滤操作。

  3. **数据索引**:提供了多种索引方式,包括标签索引、时间索引等。

  4. **数据可视化**:Pandas 可以与 Matplotlib 等可视化库集成,方便地进行数据可视化。

安装 Pandas

pip install pandas

基本使用:

  1. **导入 Pandas**:

import pandas as pd

  1. **创建 DataFrame**:
python 复制代码
# 使用字典创建 DataFrame
data = {'Name': ['John', 'Anna', 'Peter', 'Linda'],
        'Age': [28, 23, 34, 29],
        'City': ['New York', 'Paris', 'Berlin', 'London']}
df = pd.DataFrame(data)
  1. **查看数据**:
python 复制代码
# 查看前5行数据
print(df.head())

# 查看数据框信息
print(df.info())
  1. **数据选择**:
python 复制代码
# 选择列
print(df['Name'])

# 选择行
print(df[df['Age'] > 25])
  1. **数据清洗**:
python 复制代码
# 删除缺失值
df_cleaned = df.dropna()

# 填充缺失值
df_filled = df.fillna(value=0)
  1. **数据排序**:
python 复制代码
# 按年龄升序排序
df_sorted = df.sort_values(by='Age')

`

  1. **数据可视化**:
python 复制代码
import matplotlib.pyplot as plt

# 绘制年龄的直方图
df['Age'].hist()
plt.show()

Pandas 是一个非常强大的库,可以用于数据导入、清洗、处理、分析和可视化。以上只是一些基础用法,Pandas 的功能远不止这些,它还有更多高级功能等待你去探索。

相关推荐
lyx33136967592 天前
Pandas数据结构详解Series与DataFrame
数据结构·pandas
计算机毕设-小月哥2 天前
完整源码+技术文档!基于Hadoop+Spark的鲍鱼生理特征大数据分析系统免费分享
大数据·hadoop·spark·numpy·pandas·计算机毕业设计
姜—姜7 天前
数据分析总结
数据挖掘·数据分析·numpy·pandas·matplotlib·jieba·seaborn
万粉变现经纪人12 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘transformers’问题
人工智能·python·beautifulsoup·pandas·scikit-learn·pip·ipython
史锦彪15 天前
Pandas 入门:数据分析的得力工具
数据挖掘·数据分析·pandas
Wangsk13315 天前
用 Python 批量处理 Excel:从重复值清洗到数据可视化
python·信息可视化·excel·pandas
木木子999915 天前
Pandas query() 方法详解
pandas·query
修钩.20 天前
力扣 Pandas 挑战(5)---数据分组
算法·leetcode·pandas
万粉变现经纪人20 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘plotly’问题
python·scrapy·plotly·pycharm·flask·pandas·pip
码界奇点21 天前
Python深度挖掘:openpyxl与pandas高效数据处理实战指南
开发语言·数据库·python·自动化·pandas·python3.11