Pandas 入门:数据分析的得力工具

一、Pandas 是什么?

Pandas 是一个开源的 Python 类库,专为数据分析、处理和可视化设计。它有三大优势:高性能、易用的数据结构和便捷的分析工具,是数据处理的得力助手。

二、怎么用 Pandas?

安装 :可以用 pip install pandasconda install pandas,用清华源(https://pypi.tuna.tsinghua.edu.cn/simple)能加速安装。

导入 :通常用 import pandas as pd 语句导入,方便后续使用。

三、Pandas 的核心数据结构

1. Series

它类似表格中的一列,像一维数组,能存各种数据类型,由索引和值组成。创建方式多样:

用列表:不指定索引的话,默认从 0 开始。

用 ndarray:可以自己指定索引标签,比如 'a'、'b' 等。

用字典:字典的键会成为索引,值就是 Series 的值。

还能查看它的索引(.index)和数值(.values)。

2. DataFrame

这是个表格型数据结构,有行索引和列索引,列可以是不同数据类型。构造方法灵活,数据可以是 ndarray、series、列表、字典等。创建方式有:

用列表:需要指定列标签。

用 ndarrays:把数据组织成字典形式,键作为列名。

用字典:每个字典项对应一行数据,缺失的键会用 NaN 填充。

四、Pandas 数据查询

主要用 loc() 方法:

取单行:df.loc[行索引],能返回指定行的数据。

取多行:用 df.loc[[行索引1, 行索引2...]] 的格式,返回多个指定行。

当设置了自定义索引(比如用 "Chinese"、"Math" 等),直接用自定义索引就能取对应行。

掌握这些,就能轻松上手 Pandas 处理数据啦!

相关推荐
_codemonster12 小时前
AI大模型入门到实战系列(八)文本聚类
人工智能·数据挖掘·聚类
数据科学项目实践14 小时前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
光羽隹衡17 小时前
Pandas库的基础数据类型
pandas
测试人社区-千羽18 小时前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
大数据魔法师19 小时前
昆明天气数据分析与挖掘(二)- 昆明天气数据预处理
数据分析
艾上编程20 小时前
第二章——数据分析场景之用Python进行CSV/Excel数据清洗:为数据分析筑牢根基
python·数据分析·excel
睿航马克西姆20 小时前
350年飞行梦想的新突破:人类与AI共同挑战大气压力极限
数据挖掘
Python极客之家21 小时前
基于Django的高校二手市场与社交系统
后端·python·数据挖掘·django·毕业设计
艾上编程21 小时前
第二章——数据分析场景之Python数据可视化:用Matplotlib与Seaborn绘制洞察之图
python·信息可视化·数据分析
databook1 天前
数据点的“社交距离”:衡量它们之间的相似与差异
python·数据挖掘·数据分析