Pandas 入门:数据分析的得力工具

一、Pandas 是什么?

Pandas 是一个开源的 Python 类库,专为数据分析、处理和可视化设计。它有三大优势:高性能、易用的数据结构和便捷的分析工具,是数据处理的得力助手。

二、怎么用 Pandas?

安装 :可以用 pip install pandasconda install pandas,用清华源(https://pypi.tuna.tsinghua.edu.cn/simple)能加速安装。

导入 :通常用 import pandas as pd 语句导入,方便后续使用。

三、Pandas 的核心数据结构

1. Series

它类似表格中的一列,像一维数组,能存各种数据类型,由索引和值组成。创建方式多样:

用列表:不指定索引的话,默认从 0 开始。

用 ndarray:可以自己指定索引标签,比如 'a'、'b' 等。

用字典:字典的键会成为索引,值就是 Series 的值。

还能查看它的索引(.index)和数值(.values)。

2. DataFrame

这是个表格型数据结构,有行索引和列索引,列可以是不同数据类型。构造方法灵活,数据可以是 ndarray、series、列表、字典等。创建方式有:

用列表:需要指定列标签。

用 ndarrays:把数据组织成字典形式,键作为列名。

用字典:每个字典项对应一行数据,缺失的键会用 NaN 填充。

四、Pandas 数据查询

主要用 loc() 方法:

取单行:df.loc[行索引],能返回指定行的数据。

取多行:用 df.loc[[行索引1, 行索引2...]] 的格式,返回多个指定行。

当设置了自定义索引(比如用 "Chinese"、"Math" 等),直接用自定义索引就能取对应行。

掌握这些,就能轻松上手 Pandas 处理数据啦!

相关推荐
谅望者3 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
观远数据3 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售
思通数科人工智能大模型3 小时前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
源码之家5 小时前
基于python租房大数据分析系统 房屋数据分析推荐 scrapy爬虫+可视化大屏 贝壳租房网 计算机毕业设计 推荐系统(源码+文档)✅
大数据·爬虫·python·scrapy·数据分析·推荐算法·租房
源码之家5 小时前
机器学习:基于python租房推荐系统 预测算法 协同过滤推荐算法 房源信息 可视化 机器学习-线性回归预测模型 Flask框架(源码+文档)✅
大数据·python·算法·机器学习·数据分析·线性回归·推荐算法
阿里云大数据AI技术7 小时前
基于 Hologres 构建智能驾驶图像高性能分析系统
数据分析
咚咚王者10 小时前
人工智能之数据分析 numpy:第五章 索引与切片
人工智能·数据分析·numpy
java1234_小锋11 小时前
[免费]基于python的Flask+Vue医疗疾病数据分析大屏可视化系统(机器学习随机森林算法+requests)【论文+源码+SQL脚本】
python·机器学习·数据分析·flask·疾病数据分析
谅望者11 小时前
数据分析笔记10:数据容器
笔记·数据挖掘·数据分析
谅望者11 小时前
数据分析笔记05:区间估计
笔记·数据挖掘·数据分析