Pandas 入门:数据分析的得力工具

一、Pandas 是什么?

Pandas 是一个开源的 Python 类库,专为数据分析、处理和可视化设计。它有三大优势:高性能、易用的数据结构和便捷的分析工具,是数据处理的得力助手。

二、怎么用 Pandas?

安装 :可以用 pip install pandasconda install pandas,用清华源(https://pypi.tuna.tsinghua.edu.cn/simple)能加速安装。

导入 :通常用 import pandas as pd 语句导入,方便后续使用。

三、Pandas 的核心数据结构

1. Series

它类似表格中的一列,像一维数组,能存各种数据类型,由索引和值组成。创建方式多样:

用列表:不指定索引的话,默认从 0 开始。

用 ndarray:可以自己指定索引标签,比如 'a'、'b' 等。

用字典:字典的键会成为索引,值就是 Series 的值。

还能查看它的索引(.index)和数值(.values)。

2. DataFrame

这是个表格型数据结构,有行索引和列索引,列可以是不同数据类型。构造方法灵活,数据可以是 ndarray、series、列表、字典等。创建方式有:

用列表:需要指定列标签。

用 ndarrays:把数据组织成字典形式,键作为列名。

用字典:每个字典项对应一行数据,缺失的键会用 NaN 填充。

四、Pandas 数据查询

主要用 loc() 方法:

取单行:df.loc[行索引],能返回指定行的数据。

取多行:用 df.loc[[行索引1, 行索引2...]] 的格式,返回多个指定行。

当设置了自定义索引(比如用 "Chinese"、"Math" 等),直接用自定义索引就能取对应行。

掌握这些,就能轻松上手 Pandas 处理数据啦!

相关推荐
计算机科研圈2 小时前
字节Seed发布扩散语言模型,推理速度达2146 tokens/s,比同规模自回归快5.4倍
人工智能·语言模型·自然语言处理·数据挖掘·开源·字节
Y.ppm4 小时前
数分思维14:用户研究与数据分析
数据挖掘·数据分析
Wangsk1334 小时前
用 Python 批量处理 Excel:从重复值清洗到数据可视化
python·信息可视化·excel·pandas
木木子99997 小时前
Pandas query() 方法详解
pandas·query
失散137 小时前
数据处理和统计分析——12 Matplotlib绘图
数据分析·matplotlib
就是帅我不改11 小时前
深度模拟用户行为:用Playwright爬取B站弹幕与评论数据
爬虫·数据挖掘
Damon小智11 小时前
基于华为开发者空间的Open WebUI数据分析与可视化实战
华为·ai·数据挖掘·数据分析
华科云商xiao徐15 小时前
基于Mojo与Mechanize的Perl高效爬虫实现
爬虫·数据挖掘·数据分析
华科云商xiao徐15 小时前
PowerShell部署Windows爬虫自动化方案
爬虫·数据挖掘·数据可视化