RabbitMQ死信队列

死信队列

面试题: 你们是如何保证消息不丢失的?

1、什么是死信

在 RabbitMQ 中充当主角的就是消息,在不同场景下,消息会有不同地表现。

死信就是消息在特定场景下的一种表现形式,这些场景包括:

  1. 消息被拒绝访问,即消费者返回 basicNack 的信号时 或者拒绝basicReject

2. 消费者发生异常,超过重试次数 。 ( 其实spring框架调用的就是 basicNack**)**

  1. 消息的Expiration 过期时长或队列TTL过期时间。.ttl(20*1000) 进入的是 先进业务队列的数据

  2. 消息队列达到最大容量 .maxLength(5)

上述场景经常产生死信,即消息在这些场景中时,被称为死信。

2、什么是死信队列

死信队列就是用于储存死信的消息队列,在死信队列中,有且只有死信构成,不会存在其余类型的消息。

死信队列在 RabbitMQ 中并不会单独存在,往往死信队列都会绑定这一个普通的业务消息队列,当所绑定的消息队列中,有消息变成死信了,那么这个消息就会重新被死信交换机路由到指定的死信队列中去,我们可以通过对这个死信队列进行监听,从而手动的去对这一消息进行补偿。 人工干预

3、那么,我们到底如何来使用死信队列呢?

死信队列基本使用,只需要在声明业务队列的时候,绑定指定的死信交换机和RoutingKey即可。

java 复制代码
 @Bean //死信交换机
    public DirectExchange deadExchange() {
        return   ExchangeBuilder.directExchange("dead_ex").durable(true).build();
    }
    @Bean //死信队列
    public Queue deadQueue() {
        return  QueueBuilder.durable("dead_ordering_ok_wms").build();
    }
    @Bean //绑定死信队列与死信交换机的关系
    public Binding bindingDead(){
        return   BindingBuilder.bind(deadQueue()).to(deadExchange()).with("dead_ordering_ok_wms");
    }
    @Bean  //业务交换机
    public FanoutExchange exchange() {
        return    ExchangeBuilder.fanoutExchange("ordering_ok").durable(true).build();
    }
    @Bean //业务队列
    public Queue queue() {
        return  QueueBuilder
                .durable("ordering_ok_wms")
                .deadLetterExchange("dead_ex")
                .deadLetterRoutingKey("dead_ordering_ok_wms")
                //.ttl(20*1000) //该属性是队列的属性,设置消息的过期时间,消息在队列里面停留时间n毫秒后,就会把这个消息投递到死信交换机,针对的是所有的消息
                //.maxLength(5) //设置队列存放消息的最大个数,x-max-length属性值,当队列里面消息超过20,会把队列之前的消息依次放进死信队列
                .build();
    }

    @Bean //业务绑定队列与交换机的关系
    public Binding binding(){
      return   BindingBuilder.bind(queue()).to(exchange());
    }


   // @RabbitListener(queues = "ordering_ok_wms")
    public  void  consume(OrderingOk msg) throws IOException {
            log.debug("wms处理订单->{}",msg);
            int i = 1/0;
    }

4. 自动应答死信配置

#-------------MQ 高级配置---------

#预抓取数量

spring.rabbitmq.listener.simple.prefetch=250

#设置消费者手动应答模式

spring.rabbitmq.listener.simple.acknowledge-mode = auto

#开启自动应答重试机制

spring.rabbitmq.listener.simple.retry.enabled=true

#默认重试3次

spring.rabbitmq.listener.simple.retry.max-attempts=3

#重试间隔时间 单位ms

spring.rabbitmq.listener.simple.retry.initial-interval=1000ms

#时间间隔倍数,默认是1倍

spring.rabbitmq.listener.simple.retry.multiplier=2

#最大间隔时间

spring.rabbitmq.listener.simple.retry.max-interval=5000ms

相关推荐
大千AI助手4 小时前
程序合约:形式化验证中的规范与实现框架
分布式·区块链·软件开发·形式化验证·大千ai助手·程序合约·contracts
云和数据.ChenGuang4 小时前
Deepseek适配场景:OpenEuler系统下RabbitMQ安装与基础配置教程
分布式·rabbitmq·ruby
时光追逐者5 小时前
一个基于 .NET 开源、功能强大的分布式微服务开发框架
分布式·微服务·开源·c#·.net·.net core
2501_940198695 小时前
【前瞻创想】Kurator·云原生实战派:打造下一代分布式云原生基础设施
分布式·云原生
太阳伞下的阿呆6 小时前
kafka高吞吐持久化方案(2)
分布式·kafka·高并发·重入锁
永亮同学7 小时前
【探索实战】告别繁琐,一栈统一:Kurator 从0到1落地分布式云原生应用管理平台!
分布式·云原生
十五年专注C++开发8 小时前
ZeroMQ: 一款高性能、异步、轻量级的消息传输库
网络·c++·分布式·zeroqm
张人玉9 小时前
LiveCharts WPF MVVM 图表开发笔记
大数据·分布式·wpf·livecharts
不惑_9 小时前
Kurator 分布式云原生平台从入门到实战教程
分布式·云原生