24/10/12 算法笔记 汇聚层

汇聚(pooling)层等于池化层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

空间降采样通常指的是在图像或信号处理中,通过减少数据的空间维度来降低数据量,同时尽可能保留重要的信息。

在卷积神经网络(CNN)中,卷积层对空间降采样具有一定的敏感性,这意味着卷积层对输入数据的空间位置变化比较敏感。例如,如果输入图像中的一个特征(如边缘或纹理)发生轻微的平移,卷积层可能会检测到不同的输出。这种敏感性在某些情况下是有益的,因为它允许网络捕捉到精确的特征位置,但在其他情况下,我们可能希望网络对输入的微小变化更加鲁棒。

为了降低这种敏感性并提高网络对输入变化的鲁棒性,通常会在卷积层之后引入池化层(Pooling Layer)。

复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

多通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。

所以要连接张量构建通道。

复制代码
X = torch.cat((X, X + 1), 1)
相关推荐
一水鉴天4 分钟前
整体设计 逻辑系统程序 之27 拼语言整体设计 9 套程序架构优化与核心组件(CNN 改造框架 / Slave/Supervisor/ 数学工具)协同设计
人工智能·算法
Y_Chime8 分钟前
从AAAI2025中挑选出对目标检测有帮助的文献——第二期
人工智能·目标检测·计算机视觉
将车24420 分钟前
C++实现二叉树搜索树
开发语言·数据结构·c++·笔记·学习
日更嵌入式的打工仔26 分钟前
存储同步管理器SyncManager 归纳
笔记·单片机·嵌入式硬件
Larry_Yanan27 分钟前
QML学习笔记(四十)QML的FileDialog和FolderDialog
笔记·qt·学习
佛喜酱的AI实践31 分钟前
Claude Code配置指南已死,这个一键安装工具才是未来
人工智能·claude
还是大剑师兰特31 分钟前
Transformer 面试题及详细答案120道(91-100)-- 理论与扩展
人工智能·深度学习·transformer·大剑师
bytemaster32 分钟前
国内开发者如何流畅、低成本地用上 Claude Code?有哪些接入 Kimi、通义千问的靠谱方案?
人工智能·程序员
小白狮ww37 分钟前
小米开源端到端语音模型 MiMo-Audio-7B-Instruct 语音智能与音频理解达 SOTA
人工智能·深度学习·机器学习
AI袋鼠帝37 分钟前
最强开源0.9B级OCR模型!本地Agent、知识库都有救了~
人工智能