24/10/12 算法笔记 汇聚层

汇聚(pooling)层等于池化层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

空间降采样通常指的是在图像或信号处理中,通过减少数据的空间维度来降低数据量,同时尽可能保留重要的信息。

在卷积神经网络(CNN)中,卷积层对空间降采样具有一定的敏感性,这意味着卷积层对输入数据的空间位置变化比较敏感。例如,如果输入图像中的一个特征(如边缘或纹理)发生轻微的平移,卷积层可能会检测到不同的输出。这种敏感性在某些情况下是有益的,因为它允许网络捕捉到精确的特征位置,但在其他情况下,我们可能希望网络对输入的微小变化更加鲁棒。

为了降低这种敏感性并提高网络对输入变化的鲁棒性,通常会在卷积层之后引入池化层(Pooling Layer)。

复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

多通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。

所以要连接张量构建通道。

复制代码
X = torch.cat((X, X + 1), 1)
相关推荐
Mintopia5 小时前
零信任架构下的 WebAIGC 服务安全技术升级方向
前端·人工智能·trae
AA陈超5 小时前
ASC学习笔记0019:返回给定游戏属性的当前值,如果未找到该属性则返回零。
c++·笔记·学习·游戏·ue5·虚幻引擎
Danceful_YJ9 小时前
33.Transformer架构
人工智能·pytorch·深度学习
星星20259 小时前
VSCode插件精选:4款高效UML绘图工具
笔记
美狐美颜SDK开放平台11 小时前
美颜SDK性能优化实战:GPU加速与AI人脸美型的融合开发
人工智能·音视频
AI浩12 小时前
VSSD:具有非因果状态空间对偶性的视觉Mamba模型
人工智能·目标检测·计算机视觉
lqqjuly13 小时前
Lidar调试记录Ⅳ之Ubuntu22.04+ROS2+Livox_SDK2环境下编译Livox ROS Driver 2
人工智能·机器人·自动驾驶
qq_4369621813 小时前
数据中台:打破企业数据孤岛,实现全域资产化的关键一步
数据库·人工智能·信息可视化·数据挖掘·数据分析
宇若-凉凉13 小时前
BERT 完整教程指南
人工智能·深度学习·bert
lkbhua莱克瓦2414 小时前
Java基础——方法
java·开发语言·笔记·github·学习方法