24/10/12 算法笔记 汇聚层

汇聚(pooling)层等于池化层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

空间降采样通常指的是在图像或信号处理中,通过减少数据的空间维度来降低数据量,同时尽可能保留重要的信息。

在卷积神经网络(CNN)中,卷积层对空间降采样具有一定的敏感性,这意味着卷积层对输入数据的空间位置变化比较敏感。例如,如果输入图像中的一个特征(如边缘或纹理)发生轻微的平移,卷积层可能会检测到不同的输出。这种敏感性在某些情况下是有益的,因为它允许网络捕捉到精确的特征位置,但在其他情况下,我们可能希望网络对输入的微小变化更加鲁棒。

为了降低这种敏感性并提高网络对输入变化的鲁棒性,通常会在卷积层之后引入池化层(Pooling Layer)。

复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

多通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。

所以要连接张量构建通道。

复制代码
X = torch.cat((X, X + 1), 1)
相关推荐
Lethehong20 分钟前
openEuler AI 图像处理:Stable Diffusion CPU 推理性能优化与评测
人工智能
Guheyunyi24 分钟前
智慧停车管理系统:以科技重塑交通效率与体验
大数据·服务器·人工智能·科技·安全·生活
std8602125 分钟前
微软将允许用户从Windows 11文件资源管理器中移除“AI 动作”入口
人工智能·microsoft
为爱停留28 分钟前
Spring AI实现MCP(Model Context Protocol)详解与实践
java·人工智能·spring
秋刀鱼 ..28 分钟前
第七届国际科技创新学术交流大会暨机械工程与自动化国际学术会议(MEA 2025)
运维·人工智能·python·科技·机器人·自动化
学历真的很重要7 小时前
VsCode+Roo Code+Gemini 2.5 Pro+Gemini Balance AI辅助编程环境搭建(理论上通过多个Api Key负载均衡达到无限免费Gemini 2.5 Pro)
前端·人工智能·vscode·后端·语言模型·负载均衡·ai编程
普通网友7 小时前
微服务注册中心与负载均衡实战精要,微软 2025 年 8 月更新:对固态硬盘与电脑功能有哪些潜在的影响。
人工智能·ai智能体·技术问答
苍何7 小时前
一人手搓!AI 漫剧从0到1详细教程
人工智能
苍何7 小时前
Gemini 3 刚刷屏,蚂蚁灵光又整活:一句话生成「闪游戏」
人工智能
思成不止于此7 小时前
MySQL 查询实战(三):排序与综合练习
数据库·笔记·学习·mysql