24/10/12 算法笔记 汇聚层

汇聚(pooling)层等于池化层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

空间降采样通常指的是在图像或信号处理中,通过减少数据的空间维度来降低数据量,同时尽可能保留重要的信息。

在卷积神经网络(CNN)中,卷积层对空间降采样具有一定的敏感性,这意味着卷积层对输入数据的空间位置变化比较敏感。例如,如果输入图像中的一个特征(如边缘或纹理)发生轻微的平移,卷积层可能会检测到不同的输出。这种敏感性在某些情况下是有益的,因为它允许网络捕捉到精确的特征位置,但在其他情况下,我们可能希望网络对输入的微小变化更加鲁棒。

为了降低这种敏感性并提高网络对输入变化的鲁棒性,通常会在卷积层之后引入池化层(Pooling Layer)。

复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

多通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。 这意味着汇聚层的输出通道数与输入通道数相同。

所以要连接张量构建通道。

复制代码
X = torch.cat((X, X + 1), 1)
相关推荐
开开心心_Every11 分钟前
便捷的Office批量转PDF工具
开发语言·人工智能·r语言·pdf·c#·音视频·symfony
cooldream200922 分钟前
「源力觉醒 创作者计划」_基于 PaddlePaddle 部署 ERNIE-4.5-0.3B 轻量级大模型实战指南
人工智能·paddlepaddle·文心大模型
亚里随笔41 分钟前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞1 小时前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫1 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶2 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输2 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
I'm写代码2 小时前
el-tree树形结构笔记
javascript·vue.js·笔记
吴佳浩2 小时前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
kebijuelun3 小时前
百度文心 4.5 大模型详解:ERNIE 4.5 Technical Report
人工智能·深度学习·百度·语言模型·自然语言处理·aigc