MedMamba代码解释及用于糖尿病视网膜病变分类

MedMamba原理和用于糖尿病视网膜病变检测尝试

1.MedMamba原理

MedMamba发表于2024.9.28,是构建在Vision Mamba基础之上,融合了卷积神经网的架构,结构如下图:

原理简述就是图片输入后按通道输入后切分为两部分,一部分走二维分组卷积提取局部特征,一部分利用Vision Mamba中的SS2D模块提取所谓的全局特征,两个分支的输出通过通道维度的拼接后,经过channel shuffle增加信息融合。

2.代码解释

模型代码就在源码的MedMamba.py文件下,对涉及到的代码我进行了详细注释:

  • mamba部分

    基本上是使用Vision Mamaba的SS2D:

Python 复制代码
class SS2D(nn.Module):
    def __init__(
        self,
        d_model,
        d_state=16,
        # d_state="auto", # 20240109
        d_conv=3,
        expand=2,
        dt_rank="auto",
        dt_min=0.001,
        dt_max=0.1,
        dt_init="random",
        dt_scale=1.0,
        dt_init_floor=1e-4,
        dropout=0.,
        conv_bias=True,
        bias=False,
        device=None,
        dtype=None,
        **kwargs,
    ):
        # 设置设备和数据类型的关键参数
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.d_model = d_model # 模型维度
        self.d_state = d_state # 状态维度
        # self.d_state = math.ceil(self.d_model / 6) if d_state == "auto" else d_model # 20240109
        self.d_conv = d_conv # 卷积核的大小
        self.expand = expand  # 扩展因子
        self.d_inner = int(self.expand * self.d_model)  # 内部维度,等于模型维度乘以扩展因子
        # 时间步长的秩,默认为模型维度除以16
        self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
        # 输入投影层,将模型维度投影到内部维度的两倍,用于后续操作
        self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
        # 深度卷积层,输入和输出通道数相同,组数等于内部维度,用于空间特征提取
        self.conv2d = nn.Conv2d(
            in_channels=self.d_inner,
            out_channels=self.d_inner,
            groups=self.d_inner,
            bias=conv_bias,
            kernel_size=d_conv,
            padding=(d_conv - 1) // 2, # 保证输出的空间维度与输入相同
            **factory_kwargs,
        )
        self.act = nn.SiLU() # 激活函数使用 SiLU
        # 定义多个线性投影层,将内部维度投影到不同大小的向量,用于时间步长和状态
        self.x_proj = (
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
            nn.Linear(self.d_inner, (self.dt_rank + self.d_state * 2), bias=False, **factory_kwargs), 
        )
        # 将四个线性投影层的权重合并为一个参数,方便计算
        self.x_proj_weight = nn.Parameter(torch.stack([t.weight for t in self.x_proj], dim=0)) # (K=4, N, inner)
        # 删除单独的投影层以节省内存
        del self.x_proj
        # 初始化时间步长的线性投影,定义四组时间步长投影参数
        self.dt_projs = (
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
            self.dt_init(self.dt_rank, self.d_inner, dt_scale, dt_init, dt_min, dt_max, dt_init_floor, **factory_kwargs),
        )
        # 将时间步长的权重和偏置参数合并为可训练参数
        self.dt_projs_weight = nn.Parameter(torch.stack([t.weight for t in self.dt_projs], dim=0)) # (K=4, inner, rank)
        self.dt_projs_bias = nn.Parameter(torch.stack([t.bias for t in self.dt_projs], dim=0)) # (K=4, inner)
        del self.dt_projs
        # 初始化 S4D 的 A 参数,用于状态更新计算
        self.A_logs = self.A_log_init(self.d_state, self.d_inner, copies=4, merge=True) # (K=4, D, N)
        # 初始化 D 参数,用于跳跃连接的计算
        self.Ds = self.D_init(self.d_inner, copies=4, merge=True) # (K=4, D, N)
        # 选择核心的前向计算函数版本,默认为 forward_corev0
        # self.selective_scan = selective_scan_fn
        self.forward_core = self.forward_corev0
        # 输出层的层归一化,归一化到内部维度
        self.out_norm = nn.LayerNorm(self.d_inner)
        # 输出投影层,将内部维度投影回原始模型维度
        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
        # 设置 dropout 层,如果 dropout 参数大于 0,则应用随机失活以防止过拟合
        self.dropout = nn.Dropout(dropout) if dropout > 0. else None

    @staticmethod
    def dt_init(dt_rank, d_inner, dt_scale=1.0, dt_init="random", dt_min=0.001, dt_max=0.1, dt_init_floor=1e-4, **factory_kwargs):
        dt_proj = nn.Linear(dt_rank, d_inner, bias=True, **factory_kwargs)
        # 初始化用于时间步长计算的线性投影层
        # Initialize special dt projection to preserve variance at initialization
        # 特殊初始化方法,用于保持初始化时的方差不变
        dt_init_std = dt_rank**-0.5 * dt_scale
        if dt_init == "constant": # 初始化为常数
            nn.init.constant_(dt_proj.weight, dt_init_std)
        elif dt_init == "random": # 初始化为均匀随机数
            nn.init.uniform_(dt_proj.weight, -dt_init_std, dt_init_std)
        else:
            raise NotImplementedError

        # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
        # 初始化偏置,以便在使用 F.softplus 时,结果处于 dt_min 和 dt_max 之间
        dt = torch.exp(
            torch.rand(d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        ).clamp(min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        # softplus 的逆操作,确保偏置初始化在合适范围内
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        with torch.no_grad():
            dt_proj.bias.copy_(inv_dt)  # 设置偏置参数
        # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
        dt_proj.bias._no_reinit = True # 将该偏置标记为不重新初始化
        
        return dt_proj
  • SS_Conv_SSM

    这部分就是论文提出的创新点,图片中的结构

    Python 复制代码
    class SS_Conv_SSM(nn.Module):
        def __init__(
            self,
            hidden_dim: int = 0,
            drop_path: float = 0,
            norm_layer: Callable[..., torch.nn.Module] = partial(nn.LayerNorm, eps=1e-6),
            attn_drop_rate: float = 0,
            d_state: int = 16,
            **kwargs,
        ):
            super().__init__()
            # 初始化第一个归一化层,归一化的维度是隐藏维度的一半
            self.ln_1 = norm_layer(hidden_dim//2)
            # 初始化自注意力模块 SS2D,输入维度为隐藏维度的一半
            self.self_attention = SS2D(d_model=hidden_dim//2,
                                       dropout=attn_drop_rate,
                                       d_state=d_state,
                                       **kwargs)
            # DropPath 层,用于随机丢弃路径,提高模型的泛化能力
            self.drop_path = DropPath(drop_path)
            # 定义卷积模块,由多个卷积层和批量归一化层组成,用于特征提取
            self.conv33conv33conv11 = nn.Sequential(
                nn.BatchNorm2d(hidden_dim // 2),
                nn.Conv2d(in_channels=hidden_dim//2,out_channels=hidden_dim//2,kernel_size=3,stride=1,padding=1),
                nn.BatchNorm2d(hidden_dim//2),
                nn.ReLU(),
                nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=3, stride=1, padding=1),
                nn.BatchNorm2d(hidden_dim // 2),
                nn.ReLU(),
                nn.Conv2d(in_channels=hidden_dim // 2, out_channels=hidden_dim // 2, kernel_size=1, stride=1),
                nn.ReLU()
            )
            # 注释掉的最终卷积层,可能用于进一步调整输出维度
            # self.finalconv11 = nn.Conv2d(in_channels=hidden_dim, out_channels=hidden_dim, kernel_size=1, stride=1)
        def forward(self, input: torch.Tensor):
            # 将输入张量沿最后一个维度分割为左右两部分
            input_left, input_right = input.chunk(2,dim=-1)
            # 对右侧输入进行归一化和自注意力操作,之后应用 DropPath 随机丢弃
            x = self.drop_path(self.self_attention(self.ln_1(input_right)))
            # 将左侧输入从 (batch_size, height, width, channels)
            # 转换为 (batch_size, channels, height, width) 以适应卷积操作
            input_left = input_left.permute(0,3,1,2).contiguous()
            input_left = self.conv33conv33conv11(input_left)
            # 将卷积后的左侧输入转换回原来的形状 (batch_size, height, width, channels)
            input_left = input_left.permute(0,2,3,1).contiguous()
            # 将左侧和右侧的输出在最后一个维度上拼接起来
            output = torch.cat((input_left,x),dim=-1)
            # 对拼接后的输出进行通道混洗,增加特征的融合
            output = channel_shuffle(output,groups=2)
            # 返回最终的输出,增加残差连接,将输入与输出相加
            return output+input
  • VSSLayer

    有以上结构堆叠构成网络结构

    Python 复制代码
    class VSSLayer(nn.Module):
        """ A basic Swin Transformer layer for one stage.
        Args:
            dim (int): Number of input channels.
            depth (int): Number of blocks.
            drop (float, optional): Dropout rate. Default: 0.0
            attn_drop (float, optional): Attention dropout rate. Default: 0.0
            drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
            norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
            downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
        """
    
        def __init__(
            self, 
            dim, 
            depth, 
            attn_drop=0.,
            drop_path=0., 
            norm_layer=nn.LayerNorm, 
            downsample=None, 
            use_checkpoint=False, 
            d_state=16,
            **kwargs,
        ):
            super().__init__()
            # 设置输入通道数
            self.dim = dim
            # 是否使用检查点
            self.use_checkpoint = use_checkpoint
            # 创建 SS_Conv_SSM 块列表,数量为 depth
            self.blocks = nn.ModuleList([
                SS_Conv_SSM(
                    hidden_dim=dim, # 隐藏层维度等于输入维度
                    # 处理随机深度的丢弃率
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    norm_layer=norm_layer, # 使用的归一化层
                    attn_drop_rate=attn_drop, # 注意力丢弃率
                    d_state=d_state, # 状态维度
                )
                for i in range(depth)]) # 重复 depth 次构建块
            # 初始化权重 (暂时没有真正初始化,可能在后续被重写)
            # 确保这一初始化应用于模型 (在 VSSM 中被覆盖)
            if True: # is this really applied? Yes, but been overriden later in VSSM!
                # 对每个模块的参数进行初始化
                def _init_weights(module: nn.Module):
                    for name, p in module.named_parameters():
                        if name in ["out_proj.weight"]:
                            # 克隆并分离参数 p,用于保持随机数种子一致
                            p = p.clone().detach_() # fake init, just to keep the seed ....
                            # 使用 Kaiming 均匀初始化方法
                            nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                # 应用初始化函数到整个模型
                self.apply(_init_weights)
            # 如果提供了下采样层,则使用该层,否则设置为 None
            if downsample is not None:
                self.downsample = downsample(dim=dim, norm_layer=norm_layer)
            else:
                self.downsample = None
    
    
        def forward(self, x):
            # 逐块应用 SS_Conv_SSM 模块
            for blk in self.blocks:
                # 如果使用检查点,则通过检查点执行前向传播,节省内存
                if self.use_checkpoint:
                    x = checkpoint.checkpoint(blk, x)
                else:
                    # 否则直接进行前向传播
                    x = blk(x)
            # 如果存在下采样层,则应用下采样层
            if self.downsample is not None:
                x = self.downsample(x)
            # 返回最终的输出张量
            return x
  • 最终的网络模型类

    Python 复制代码
    class VSSM(nn.Module):
        def __init__(self, patch_size=4, in_chans=3, num_classes=1000, depths=[2, 2, 4, 2], depths_decoder=[2, 9, 2, 2],
                     dims=[96,192,384,768], dims_decoder=[768, 384, 192, 96], d_state=16, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
                     norm_layer=nn.LayerNorm, patch_norm=True,
                     use_checkpoint=False, **kwargs):
            super().__init__()
            self.num_classes = num_classes # 设置分类的类别数目
            self.num_layers = len(depths)  # 设置层的数量,即编码器层的数量
            # 如果 dims 是一个整数,则自动扩展为一个包含每一层维度的列表
            if isinstance(dims, int):
                dims = [int(dims * 2 ** i_layer) for i_layer in range(self.num_layers)]
            self.embed_dim = dims[0]  # 嵌入维度等于第一层的维度
            self.num_features = dims[-1] # 特征维度等于最后一层的维度
            self.dims = dims # 记录每一层的维度
            # 初始化补丁嵌入模块,将输入图像分割成补丁并进行线性投影
            self.patch_embed = PatchEmbed2D(patch_size=patch_size, in_chans=in_chans, embed_dim=self.embed_dim,
                norm_layer=norm_layer if patch_norm else None)
    
            # WASTED absolute position embedding ======================
            # 是否使用绝对位置编码,默认情况下不使用
            self.ape = False
            # self.ape = False
            # drop_rate = 0.0
            # 如果使用绝对位置编码,则初始化位置编码参数
            if self.ape:
                self.patches_resolution = self.patch_embed.patches_resolution
                # 创建位置编码的可训练参数,并进行截断正态分布初始化
                self.absolute_pos_embed = nn.Parameter(torch.zeros(1, *self.patches_resolution, self.embed_dim))
                trunc_normal_(self.absolute_pos_embed, std=.02)
            # 位置编码的 Dropout 层
            self.pos_drop = nn.Dropout(p=drop_rate)
            # 使用线性函数生成每层的随机深度丢弃率
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # 随机深度衰减规则
            # 解码器部分的随机深度衰减
            dpr_decoder = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths_decoder))][::-1]
            # 初始化编码器的层列表
            self.layers = nn.ModuleList()
            for i_layer in range(self.num_layers):  # 创建每一层的 VSSLayer
                layer = VSSLayer(
                    dim=dims[i_layer], # 输入维度
                    depth=depths[i_layer], # 当前层包含的块数量
                    d_state=math.ceil(dims[0] / 6) if d_state is None else d_state, # 状态维度
                    drop=drop_rate,  # Dropout率
                    attn_drop=attn_drop_rate, # 注意力 Dropout率
                    # 当前层的随机深度丢弃率
                    drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                    # 归一化层类型
                    norm_layer=norm_layer,
                    # 下采样层,最后一层不进行下采样
                    downsample=PatchMerging2D if (i_layer < self.num_layers - 1) else None,
                    # 是否使用检查点技术节省内存
                    use_checkpoint=use_checkpoint,
                )
                # 将层添加到层列表中
                self.layers.append(layer)
    
    
            # self.norm = norm_layer(self.num_features)
            # 平均池化层,用于将特征池化为单个值
            self.avgpool = nn.AdaptiveAvgPool2d(1)
            # 分类头部,使用线性层将特征映射到类别数目
            self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
            # 初始化模型权重
            self.apply(self._init_weights)
            # 对模型中的卷积层进行 Kaiming 正态分布初始化
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
        def _init_weights(self, m: nn.Module):
            """
            out_proj.weight which is previously initilized in SS_Conv_SSM, would be cleared in nn.Linear
            no fc.weight found in the any of the model parameters
            no nn.Embedding found in the any of the model parameters
            so the thing is, SS_Conv_SSM initialization is useless
            
            Conv2D is not intialized !!!
            """
            # 对线性层和归一化层进行权重初始化
            if isinstance(m, nn.Linear):
                # 对线性层的权重使用截断正态分布初始化
                trunc_normal_(m.weight, std=.02)
                # 如果存在偏置,则将其初始化为 0
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                # 对 LayerNorm 层的偏置和权重初始化
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)
    
        @torch.jit.ignore
        def no_weight_decay(self):
            # 返回不需要权重衰减的参数名
            return {'absolute_pos_embed'}
    
        @torch.jit.ignore
        def no_weight_decay_keywords(self):
            # 返回不需要权重衰减的关键字
            return {'relative_position_bias_table'}
    
        def forward_backbone(self, x):
            # 使用补丁嵌入模块处理输入张量
            x = self.patch_embed(x)
            if self.ape:
                # 如果使用绝对位置编码,则将位置编码加到输入特征上
                x = x + self.absolute_pos_embed
            # 位置编码之后应用 Dropout
            x = self.pos_drop(x)
            # 逐层通过编码器层
            for layer in self.layers:
                x = layer(x)
            return x
    
        def forward(self, x):
            # 通过骨干网络提取特征
            x = self.forward_backbone(x)
            # 变换维度以适应池化操
            x = x.permute(0,3,1,2)
            # 使用自适应平均池化将特征降维
            x = self.avgpool(x)
            # 展平成一个向量
            x = torch.flatten(x,start_dim=1)
            # 通过分类头进行最终的类别预测
            x = self.head(x)
            return x

    作者在原文中尝试了大中小三个不同的参数版本

    python 复制代码
    medmamba_t = VSSM(depths=[2, 2, 4, 2],dims=[96,192,384,768],num_classes=6).to("cuda")
    medmamba_s = VSSM(depths=[2, 2, 8, 2],dims=[96,192,384,768],num_classes=6).to("cuda")
    medmamba_b = VSSM(depths=[2, 2, 12, 2],dims=[128,256,512,1024],num_classes=6).to("cuda")

    总体论文原理比较简单,但是论文实验做得很扎实,感兴趣查看原文。

3.在糖尿病视网膜数据上实验一下效果

数据集情况

采用开源的retino_data糖尿病视网膜病变数据集:

环境安装

这部分主要是vision mamba的环境安装不要出错,参考官方Github会有问题:

  • Python 3.10.13

    • conda create -n vim python=3.10.13
  • torch 2.1.1 + cu118

    • pip install torch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 --index-url https://download.pytorch.org/whl/cu118
  • Requirements: vim_requirements.txt

    • pip install -r vim/vim_requirements.txt

wget https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.1.3.post1/causal_conv1d-1.1.3.post1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

wget https://github.com/state-spaces/mamba/releases/download/v1.1.1/mamba_ssm-1.1.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

  • pip install causal_conv1d-1.1.3.post1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

  • pip install mamba_ssm-1.1.1+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

  • 然后用官方项目里的mamba_ssm替换安装在conda环境里的mamba_ssm

    • 用conda env list 查看刚才安装的mamba环境的路径,我的mamba环境在/home/aic/anaconda3/envs/vim

    • 用官方项目里的mamba_ssm替换安装在conda环境里的mamba_ssm

      cp -rf mamba-1p1p1/mamba_ssm /home/aic/anaconda3/envs/vim/lib/python3.10/site-packages

代码编写

编写一个检查数据集均值和方差的代码,不用Imagenet的:

python 复制代码
# -*- coding: utf-8 -*-
# 作者: cskywit
# 文件名: mean_std.py
# 创建时间: 2024-10-07
# 文件描述:计算数据集的均值和方差


# 导入必要的库
from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms

# 定义函数get_mean_and_std,用于计算训练数据集的均值和标准差
def get_mean_and_std(train_data):
  # 创建DataLoader,用于批量加载数据
  train_loader = torch.utils.data.DataLoader(
      train_data, batch_size=1, shuffle=False, num_workers=0,
      pin_memory=True)
  # 初始化均值和标准差
  mean = torch.zeros(3)
  std = torch.zeros(3)
  # 遍历数据集中的每个批次
  for X, _ in train_loader:
      # 遍历RGB三个通道
      for d in range(3):
          # 计算每个通道的均值和标准差
          mean[d] += X[:, d, :, :].mean()
          std[d] += X[:, d, :, :].std()
  # 计算最终的均值和标准差
  mean.div_(len(train_data))
  std.div_(len(train_data))
  # 返回均值和标准差列表
  return list(mean.numpy()), list(std.numpy())

# 判断是否为主程序
if __name__ == '__main__':
  root_path = '/home/aic/deep_learning_data/retino_data/train'
  # 使用ImageFolder加载训练数据集
  train_dataset = ImageFolder(root=root_path, transform=transforms.ToTensor())
  # 打印训练数据集的均值和标准差
  print(get_mean_and_std(train_dataset))
  # ([0.41586006, 0.22244255, 0.07565845],
  # [0.23795983, 0.13206834, 0.05284985])

然后编写train

python 复制代码
# -*- coding: utf-8 -*-
# 作者: cskywit
# 文件名: train_DR.py
# 创建时间: 2024-10-10
# 文件描述:
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from MedMamba import VSSM as medmamba # import model
import warnings
import os,sys



warnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES']="0"

# 设置随机因子
def seed_everything(seed=42):
  os.environ['PYHTONHASHSEED'] = str(seed)
  torch.manual_seed(seed)
  torch.cuda.manual_seed(seed)
  torch.backends.cudnn.deterministic = True

def main():
  # 设置随机因子
  seed_everything()
  # 一些超参数设定
  num_classes = 2
  BATCH_SIZE = 64
  num_of_workers = min([os.cpu_count(), BATCH_SIZE if BATCH_SIZE > 1 else 0, 8])  # number of workers
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
  epochs = 300
  best_acc = 0.0
  save_path = './{}.pth'.format('bestmodel')
  # 数据预处理
  transform = transforms.Compose([
      transforms.RandomRotation(10),
      transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),
      transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
      transforms.Resize((224, 224)),
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.41593555, 0.22245076, 0.075719066],
                           std=[0.23819199, 0.13202211, 0.05282707])

  ])
  transform_test = transforms.Compose([
      transforms.Resize((224, 224)),
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.41593555, 0.22245076, 0.075719066],
                           std=[0.23819199, 0.13202211, 0.05282707])
  ])
  # 加载数据集
  root_path = '/home/aic/deep_learning_data/retino_data'
  train_path = os.path.join(root_path, 'train')
  valid_path = os.path.join(root_path, 'valid')
  test_path = os.path.join(root_path, 'test')
  dataset_train = datasets.ImageFolder(train_path, transform=transform)
  dataset_valid = datasets.ImageFolder(valid_path, transform=transform_test)
  dataset_test = datasets.ImageFolder(test_path, transform=transform_test)
  class_labels = {0: 'Diabetic Retinopathy', 1: 'No Diabetic Retinopathy'}
  val_num = len(dataset_valid)

  train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE,
                                             num_workers=num_of_workers,
                                             shuffle=True,
                                             drop_last=True)
  valid_loader = torch.utils.data.DataLoader(dataset_valid,
                                             batch_size=BATCH_SIZE,
                                             num_workers=num_of_workers,
                                             shuffle=False,
                                             drop_last=True)
  test_loader = torch.utils.data.DataLoader(dataset_test,
                                            batch_size=BATCH_SIZE,
                                            shuffle=False)
  print('Using {} dataloader workers every process'.format(num_of_workers))

  # 模型定义
  net = medmamba(num_classes=num_classes).to(device)
  loss_function = nn.CrossEntropyLoss()
  optimizer = optim.Adam(net.parameters(), lr=0.0001)
  train_steps = len(train_loader)

  for epoch in range(epochs):
      # train
      net.train()
      running_loss = 0.0
      train_bar = tqdm(train_loader, file=sys.stdout)
      for step, data in enumerate(train_bar):
          images, labels = data
          optimizer.zero_grad()
          outputs = net(images.to(device))
          loss = loss_function(outputs, labels.to(device))
          loss.backward()
          optimizer.step()

          # print statistics
          running_loss += loss.item()

          train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                   epochs,
                                                                   loss)

      # validate
      net.eval()
      acc = 0.0  # accumulate accurate number / epoch
      with torch.no_grad():
          val_bar = tqdm(valid_loader, file=sys.stdout)
          for val_data in val_bar:
              val_images, val_labels = val_data
              outputs = net(val_images.to(device))
              predict_y = torch.max(outputs, dim=1)[1]
              acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

      val_accurate = acc / val_num
      print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
            (epoch + 1, running_loss / train_steps, val_accurate))

      if val_accurate > best_acc:
          best_acc = val_accurate
          torch.save(net.state_dict(), save_path)

  print('Finished Training')

if __name__ == '__main__':
  main()

感觉Mamaba系列的通病了吧,显存占用不算高,GPU利用率超高:

可能是没有用任何的训练调参技巧,经过几个epoch后,验证集准确率很快提升到了92.3%,然后就没有继续上升了。

相关推荐
hunter2062062 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z4 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云6 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山9 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang10 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio91510 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉