OCR模型调研及详细安装

OCR模型调研及详细安装

1 搭建 Tesseract-OCR 环境。

1.1 注意需先手动安装Tesseract-OCR, 下载地址:https://digi.bib.uni-mannheim.de/tesseract/?C=M;O=D

复制代码
注意:安装的时候选中中文包(安装时把所有选项都勾上)。
安装磁盘选择与运行的代码在同一磁盘。
安装 Tesseract-OCR 后,需将 Tesseract-OCR 对应的安装路径添加到系统环境变量中。

安装完成后,使用命令,查看版本号和支持语言:
cd C:\Program Files\Tesseract-OCR  
tesseract -v tesseract --list-langs -v tesseract --list-langs 

若有语言方面的Error,需将中文包 chi_sim.traineddata 下载到本地C:\Program Files\Tesseract-OCR 路径下。(见1.3下载语言包)

1.2 再安装python库pytesseract

复制代码
pip install pytesseract

1.3 下载语言包,并放到Tesseract的目录下

复制代码
下载地址:https://github.com/tesseract-ocr/tesseract/wiki/Data-Files
        https://tesseract-ocr.github.io/tessdoc/Data-Files

1.4 代码块

复制代码
def tesseract_to_str(image_path):
    """Tesseract-OCR: 提取图片中的文字,返回 text字符串"""
    from PIL import Image
    import pytesseract
    import os

    if not os.path.isfile(image_path):
        logging.info('          路径存在问题,请检查image_path: '.format(image_path))
        return ''
    image = Image.open(image_path)
    # 如果没有将tesseract的安装目录添加到系统环境变量中,则需要指定安装路径,
    pytesseract.pytesseract.tesseract_cmd = r"D:\Program_Files\Tesseract-OCR\tesseract.exe"
    testdata_dir_config = '--tessdata-dir D:/Program_Files/Tesseract-OCR/tessdata'
    # 调用pytesseract库提取文字,识别中文需指定语言lang='chi_sim'
    print('-'*20,'获取图中的文字','-'*20)
    try:
        text_from_image = pytesseract.image_to_string(image,  config=testdata_dir_config, lang='chi_sim')
    except Exception as e:
        logging.info('          识别文字失败:{} '.format(e))
        return ''
    # print('-' * 20, '获取图中的文字完成', '-' * 20)
    # print('text_from_tesseract: \n', text_from_image)
    return text_from_image

2 EasyOCR: 是一个基于 PyTorch 的 OCR 库。

复制代码
pip install easyocr

源码

复制代码
https://github.com/JaidedAI/EasyOCR
API详解见:https://blog.csdn.net/yohnyang/article/details/130300923

模型储存路径:

复制代码
windows: C:\Users\username\.EasyOCR\
linux:/root/.EasyOCR/

代码

复制代码
def easyocr_to_str(image_path):
    import easyocr
    # import os
    # os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

    # reader = easyocr.Reader(['ch_sim','en'], gpu = False)
    print('result:1 \n', )
    reader = easyocr.Reader(['ch_sim',], gpu = False)
    print('result:2 \n', )
    result = reader.readtext(image_path)
    print('result: \n', result)
    for detection in result:
        print(detection[1])

问题

复制代码
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

修改:

网友说的方法:

添加如下代码

复制代码
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

然而没用,然后修改了自己环境中的如下内容之后,不再报错了,即使将上述os内容注释,也不报错。

复制代码
D:\ProgramFiles\miniconda3\envs\env_myenv\Library\bin路径下的libiomp5md.dll改为libiomp5md.dll.bk

识别文本示例:

复制代码

3 Keras-OCR

源码

复制代码
https://gitcode.com/gh_mirrors/ke/keras-ocr/overview?utm_source=artical_gitcode&index=top&type=card&webUrl

安装

复制代码
安装 :keras-ocr支持Python >= 3.6和TensorFlow >= 2.0.0。
方法1: 从主分支安装
pip install git+https://github.com/faustomorales/keras-ocr.git#egg=keras-ocr
方法2: 从PyPi安装
pip install keras-ocr

4 Doctr 识别文档中的文本区域、图像和表格

项目地址

复制代码
https://gitcode.com/gh_mirrors/do/doctr/overview?utm_source=artical_gitcode&index=top&type=card&webUrl&isLogin=1

安装

复制代码
pip install "python-doctr[torch]"

首次运行会下载模型,存储在

复制代码
C:\Users\hlj\.cache\doctr\models\db_resnet50-79bd7d70.pt
C:\Users\hlj\.cache\doctr\models\crnn_vgg16_bn-9762b0b0.pt

缺点

复制代码
不支持中文模型
相关推荐
AI人工智能+3 小时前
应用银行卡识别技术,构建更安全、便捷的数字身份认证与支付生态
人工智能·ocr·银行卡识别
deephub17 小时前
Dots.ocr:告别复杂多模块架构,1.7B参数单一模型统一处理所有OCR任务22
人工智能·深度学习·神经网络·ocr
ccut 第一混2 天前
c#联合Halcon进行OCR字符识别(含halcon-25.05 百度网盘)
c#·ocr·halcon
R-G-B4 天前
【04】OpenCV C++实战篇——实战:发票精准定位,提取指定单元格数据。(倾角计算、旋转矫正、产品定位、目标定位、OCR文字提取)
c++·opencv·ocr·发票精准定位·提取指定单元格数据·倾角计算·旋转矫正
EkihzniY5 天前
单层 PDF 与双层 PDF:一字之差,功能大不同
pdf·ocr
郭庆汝8 天前
本地服务器端部署基于大模型的通用OCR项目——dots.ocr
ocr
EkihzniY10 天前
OCR 精准识别验讫章:让登记与校验更智能
ocr
CodeCraft Studio10 天前
使用 Aspose.OCR 将图像文本转换为可编辑文本
java·人工智能·python·ocr·.net·aspose·ocr工具
TextIn智能文档云平台10 天前
当文档包含图文混排表格时,如何结合大模型(如DeepSeek-VL)和OCR提取数据
人工智能·ocr·大模型文档应用
DisonTangor11 天前
小红书开源dots.ocr:单一视觉语言模型中的多语言文档布局解析
语言模型·开源·ocr