OCR模型调研及详细安装

OCR模型调研及详细安装

1 搭建 Tesseract-OCR 环境。

1.1 注意需先手动安装Tesseract-OCR, 下载地址:https://digi.bib.uni-mannheim.de/tesseract/?C=M;O=D

复制代码
注意:安装的时候选中中文包(安装时把所有选项都勾上)。
安装磁盘选择与运行的代码在同一磁盘。
安装 Tesseract-OCR 后,需将 Tesseract-OCR 对应的安装路径添加到系统环境变量中。

安装完成后,使用命令,查看版本号和支持语言:
cd C:\Program Files\Tesseract-OCR  
tesseract -v tesseract --list-langs -v tesseract --list-langs 

若有语言方面的Error,需将中文包 chi_sim.traineddata 下载到本地C:\Program Files\Tesseract-OCR 路径下。(见1.3下载语言包)

1.2 再安装python库pytesseract

复制代码
pip install pytesseract

1.3 下载语言包,并放到Tesseract的目录下

复制代码
下载地址:https://github.com/tesseract-ocr/tesseract/wiki/Data-Files
        https://tesseract-ocr.github.io/tessdoc/Data-Files

1.4 代码块

复制代码
def tesseract_to_str(image_path):
    """Tesseract-OCR: 提取图片中的文字,返回 text字符串"""
    from PIL import Image
    import pytesseract
    import os

    if not os.path.isfile(image_path):
        logging.info('          路径存在问题,请检查image_path: '.format(image_path))
        return ''
    image = Image.open(image_path)
    # 如果没有将tesseract的安装目录添加到系统环境变量中,则需要指定安装路径,
    pytesseract.pytesseract.tesseract_cmd = r"D:\Program_Files\Tesseract-OCR\tesseract.exe"
    testdata_dir_config = '--tessdata-dir D:/Program_Files/Tesseract-OCR/tessdata'
    # 调用pytesseract库提取文字,识别中文需指定语言lang='chi_sim'
    print('-'*20,'获取图中的文字','-'*20)
    try:
        text_from_image = pytesseract.image_to_string(image,  config=testdata_dir_config, lang='chi_sim')
    except Exception as e:
        logging.info('          识别文字失败:{} '.format(e))
        return ''
    # print('-' * 20, '获取图中的文字完成', '-' * 20)
    # print('text_from_tesseract: \n', text_from_image)
    return text_from_image

2 EasyOCR: 是一个基于 PyTorch 的 OCR 库。

复制代码
pip install easyocr

源码

复制代码
https://github.com/JaidedAI/EasyOCR
API详解见:https://blog.csdn.net/yohnyang/article/details/130300923

模型储存路径:

复制代码
windows: C:\Users\username\.EasyOCR\
linux:/root/.EasyOCR/

代码

复制代码
def easyocr_to_str(image_path):
    import easyocr
    # import os
    # os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

    # reader = easyocr.Reader(['ch_sim','en'], gpu = False)
    print('result:1 \n', )
    reader = easyocr.Reader(['ch_sim',], gpu = False)
    print('result:2 \n', )
    result = reader.readtext(image_path)
    print('result: \n', result)
    for detection in result:
        print(detection[1])

问题

复制代码
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/.

修改:

网友说的方法:

添加如下代码

复制代码
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

然而没用,然后修改了自己环境中的如下内容之后,不再报错了,即使将上述os内容注释,也不报错。

复制代码
D:\ProgramFiles\miniconda3\envs\env_myenv\Library\bin路径下的libiomp5md.dll改为libiomp5md.dll.bk

识别文本示例:

复制代码

3 Keras-OCR

源码

复制代码
https://gitcode.com/gh_mirrors/ke/keras-ocr/overview?utm_source=artical_gitcode&index=top&type=card&webUrl

安装

复制代码
安装 :keras-ocr支持Python >= 3.6和TensorFlow >= 2.0.0。
方法1: 从主分支安装
pip install git+https://github.com/faustomorales/keras-ocr.git#egg=keras-ocr
方法2: 从PyPi安装
pip install keras-ocr

4 Doctr 识别文档中的文本区域、图像和表格

项目地址

复制代码
https://gitcode.com/gh_mirrors/do/doctr/overview?utm_source=artical_gitcode&index=top&type=card&webUrl&isLogin=1

安装

复制代码
pip install "python-doctr[torch]"

首次运行会下载模型,存储在

复制代码
C:\Users\hlj\.cache\doctr\models\db_resnet50-79bd7d70.pt
C:\Users\hlj\.cache\doctr\models\crnn_vgg16_bn-9762b0b0.pt

缺点

复制代码
不支持中文模型
相关推荐
AI人工智能+17 小时前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
AI人工智能+19 小时前
结婚证识别技术:利用OCR和深度学习实现婚姻证件信息的自动提取与结构化处理
深度学习·ocr·结婚证识别
xyj41891 天前
《深入理解Java虚拟机JVM高级特性与最佳实践》
ocr
东风西巷2 天前
STranslate(翻译工具OCR工具) 中文绿色版
学习·ocr·电脑·软件需求
XXX-X-XXJ2 天前
三、从 MinIO 存储到 OCR 提取,再到向量索引生成
人工智能·后端·python·ocr
EkihzniY2 天前
车牌 OCR 识别:国庆高速免费通行的 “隐形引擎”
ocr
wt_cs2 天前
OCR API让工作归于调理-文字识别接口-发票、银行卡、文档识别
ocr
qq_546937272 天前
身份证批量ocr
ocr
AI人工智能+2 天前
行驶证识别技术通过OCR和AI实现信息自动化采集与处理,涵盖图像预处理、文字识别及结构化校验,提升效率与准确性
人工智能·深度学习·ocr·行驶证识别
EkihzniY2 天前
医疗发票 OCR 识别:打通医疗费用处理 “堵点” 的技术助手
大数据·人工智能·ocr