点云深度学习方法

深度学习点云数据处理主要涉及:

分类(Classification)、分割(Segmentation)、目标检测(Object Detection)、实例分割(Panoptic Segmentation)、配准(Registration)、点云重构(Reconstruction)。

论文:Deep Learning for 3D Point Clouds: A Survey中将方法进行分类

其中主要方法可以分为:基于多视图、基于点、基于体素、融合方法

1、基于点的方法

1.1 pointnet、pointnet++、pointnext方法等

1.2 卷积的方法:pointconv、kpconv、自注意力网络模型(point transformer)

1.3 图方法:DGCNN

2、基于体素的方法

2.1 voxlnet:网格划分后,提取网格内特征,之后进行卷积实现目标检测

2.2 VOtr:自注意力机制应用到体素检测中

3、多视图方法

将多个视图点云投影至2D,作为训练数据,利用卷积实现目标后再投影回3D

3.1 MVCNN

参考文章:【综述】三维点云深度学习算法综述,sota pointcloud - yeyan的文章 - 知乎

https://zhuanlan.zhihu.com/p/631205455

相关推荐
Coovally AI模型快速验证1 天前
OmniNWM:突破自动驾驶世界模型三大瓶颈,全景多模态仿真新标杆(附代码地址)
人工智能·深度学习·机器学习·计算机视觉·自动驾驶·transformer
过往入尘土1 天前
YOLOv5:实时目标检测的现代化实践与深度解析
人工智能·yolo·目标检测
青春不败 177-3266-05201 天前
GPT、DeepSeek等大语言模型应用
人工智能·gpt·深度学习·机器学习·语言模型·科研绘图
渡我白衣1 天前
C++ 同名全局变量:当符号在链接器中“相遇”
开发语言·c++·人工智能·深度学习·microsoft·语言模型·人机交互
小和尚同志1 天前
还用啥三方啊!MiniMax M2 官方免费!
人工智能·aigc
深兰科技1 天前
东方财经报道|深兰科技落户张江,AI医疗与情感陪伴并进,拓展智能未来版图
大数据·人工智能·科技
双向331 天前
从零搭建高可用个人博客:Lighthouse + 1Panel + Halo 全流程实战
人工智能
格林威1 天前
AOI在传统汽车制造领域中的应用
大数据·人工智能·数码相机·计算机视觉·ai·制造·aoi
java1234_小锋1 天前
PyTorch2 Python深度学习 - PyTorch2安装与环境配置
开发语言·python·深度学习·pytorch2
CClaris1 天前
深度学习——反向传播的本质
人工智能·python·深度学习