点云深度学习方法

深度学习点云数据处理主要涉及:

分类(Classification)、分割(Segmentation)、目标检测(Object Detection)、实例分割(Panoptic Segmentation)、配准(Registration)、点云重构(Reconstruction)。

论文:Deep Learning for 3D Point Clouds: A Survey中将方法进行分类

其中主要方法可以分为:基于多视图、基于点、基于体素、融合方法

1、基于点的方法

1.1 pointnet、pointnet++、pointnext方法等

1.2 卷积的方法:pointconv、kpconv、自注意力网络模型(point transformer)

1.3 图方法:DGCNN

2、基于体素的方法

2.1 voxlnet:网格划分后,提取网格内特征,之后进行卷积实现目标检测

2.2 VOtr:自注意力机制应用到体素检测中

3、多视图方法

将多个视图点云投影至2D,作为训练数据,利用卷积实现目标后再投影回3D

3.1 MVCNN

参考文章:【综述】三维点云深度学习算法综述,sota pointcloud - yeyan的文章 - 知乎

https://zhuanlan.zhihu.com/p/631205455

相关推荐
明明跟你说过7 分钟前
深入理解Embedding Models(嵌入模型):从原理到实战(下)
人工智能·语言模型·embedding
满怀101531 分钟前
【人工智能核心技术全景解读】从机器学习到深度学习实战
人工智能·python·深度学习·机器学习·tensorflow
Blossom.11840 分钟前
探索边缘计算:赋能物联网的未来
开发语言·人工智能·深度学习·opencv·物联网·机器学习·边缘计算
-曾牛41 分钟前
Spring AI 与 Hugging Face 深度集成:打造高效文本生成应用
java·人工智能·后端·spring·搜索引擎·springai·deepseek
modest —YBW1 小时前
Ollama+OpenWebUI+docker完整版部署,附带软件下载链接,配置+中文汉化+docker源,适合内网部署,可以局域网使用
人工智能·windows·docker·语言模型·llama
迪捷软件1 小时前
从概念表达到安全验证:智能驾驶功能迎来系统性规范
大数据·人工智能
非凡ghost1 小时前
透视相机:创意摄影新体验,解锁照片无限可能
人工智能·数码相机
weixin_307779132 小时前
使用FastAPI微服务在AWS EKS中构建上下文增强型AI问答系统
人工智能·python·云计算·fastapi·aws
智驱力人工智能2 小时前
AI智慧公园管理方案:用科技重塑市民的“夜游体验”
人工智能·科技·安全·边缘计算·视觉分析·人工智能云计算·垂钓检测
说私域2 小时前
线下消费经济“举步维艰”,开源AI智能名片链动2+1+S2B2C小程序线上“狂飙突进”!
人工智能·小程序·开源·零售