深度学习中一些好的博客

pandas中的基本知识

假设我们的pf是一个pandas的结构

  • pf.column_name
  • df['column_name']
  • df.loc[:, 'column_name']
  • df.iloc[:, column_index]

如果想将 pandas 中的数据转换为 NumPy 格式,你可以使用 .values 或 .to_numpy() 方法。

反向传播

想要有grad,首先requires_grad=True,我们的叶子节点才会保留计算的结果,并且我们还需要backward后才会计算出梯度

注意我们的向量对标量的梯度和向量对向量的梯度

反正一切的计算都是基于标量对标量的梯度上的

本身我们的输出可以看作多个输出并行组成的列表, [ z 1 , z 2 , . . . , z n ] [z_1 , z_2, ...,z_n] [z1,z2,...,zn],我们会对我们各自路径上的 y 1 , x 1 y_1,x_1 y1,x1 进行求导计算,独立进行

博客1

相关推荐
潮际好麦几秒前
AI 工具推荐:AI绘图、AI助力学习
人工智能·学习
徐小夕@趣谈前端2 分钟前
LuckyFlow:用Vue3实现的一款AI可视化工作流编辑器
vue.js·人工智能·编辑器
koo3648 分钟前
pytorch深度学习笔记5
pytorch·笔记·深度学习
weiwuxian15 分钟前
🚀 拒绝“人工智障”:如何写出一份高质量的 agent.md?
人工智能
Yeats_Liao28 分钟前
CANN Samples(十一):媒体处理接口V1与V2的取舍与迁移
人工智能·媒体
汤姆yu36 分钟前
基于srpingboot心情治愈调整系统
人工智能
国科安芯40 分钟前
航天医疗领域AS32S601芯片的性能分析与适配性探讨
大数据·网络·人工智能·单片机·嵌入式硬件·fpga开发·性能优化
咚咚王者43 分钟前
人工智能之数据分析 Pandas:第五章 文件处理
人工智能·数据分析·pandas
zhaodiandiandian1 小时前
人工智能与就业重构:机遇、挑战与政策应对
人工智能·百度·重构
浔川python社1 小时前
浔川社团:技术创作与社区运营的双重成功
人工智能