深度学习中一些好的博客

pandas中的基本知识

假设我们的pf是一个pandas的结构

  • pf.column_name
  • df['column_name']
  • df.loc[:, 'column_name']
  • df.iloc[:, column_index]

如果想将 pandas 中的数据转换为 NumPy 格式,你可以使用 .values 或 .to_numpy() 方法。

反向传播

想要有grad,首先requires_grad=True,我们的叶子节点才会保留计算的结果,并且我们还需要backward后才会计算出梯度

注意我们的向量对标量的梯度和向量对向量的梯度

反正一切的计算都是基于标量对标量的梯度上的

本身我们的输出可以看作多个输出并行组成的列表, [ z 1 , z 2 , . . . , z n ] [z_1 , z_2, ...,z_n] [z1,z2,...,zn],我们会对我们各自路径上的 y 1 , x 1 y_1,x_1 y1,x1 进行求导计算,独立进行

博客1

相关推荐
Clarence Liu3 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型3 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室3 小时前
AI4Science开源汇总
人工智能
CeshirenTester3 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis3 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs3 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷3 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极3 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发
冰西瓜6004 小时前
深度学习的数学原理(七)—— 优化器:从SGD到Adam
人工智能·深度学习
模型时代4 小时前
Claude AI 发现 500 个高危软件漏洞
人工智能