pytorch深度学习笔记13

目录

摘要

反向传播代码实现


摘要

本篇文章继续学习尚硅谷深度学习教程,学习内容是反向传播代码实现

反向传播代码实现

在之前手写数字识别案例的基础上,对SGD的计算过程进行优化。核心就是使用误差的反向传播法来计算梯度,而不是使用差分数值计算;这将大大提升学习的效率。

对于二层网络TwoLayerNet,隐藏层由一个Affine层和一个ReLU层组成,输出层则由一个Affine层和一个Softmax-with-Loss层组成。由于之前已经实现了各层的类,现在只要用"搭积木"的方式将它们拼接在一起就可以了。

将TwoLayerNet类的代码实现改进如下:

python 复制代码
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])

        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        return x
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
         for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
相关推荐
芷栀夏16 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
孤狼warrior16 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
Rorsion16 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
机器学习之心16 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
LLWZAI16 小时前
让朱雀AI检测无法判断的AI公众号文章,当创作者开始与算法「躲猫猫」
大数据·人工智能·深度学习
智者知已应修善业16 小时前
【洛谷P9975奶牛被病毒传染最少数量推导,导出多样例】2025-2-26
c语言·c++·经验分享·笔记·算法·推荐算法
Junlan2716 小时前
Cursor使用入门及连接服务器方法(更新中)
服务器·人工智能·笔记
霖大侠17 小时前
【无标题】
人工智能·深度学习·机器学习
是店小二呀17 小时前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
risc12345617 小时前
如何认识结构?结构 = 要素 + 关系 + 动态
笔记