pytorch深度学习笔记13

目录

摘要

反向传播代码实现


摘要

本篇文章继续学习尚硅谷深度学习教程,学习内容是反向传播代码实现

反向传播代码实现

在之前手写数字识别案例的基础上,对SGD的计算过程进行优化。核心就是使用误差的反向传播法来计算梯度,而不是使用差分数值计算;这将大大提升学习的效率。

对于二层网络TwoLayerNet,隐藏层由一个Affine层和一个ReLU层组成,输出层则由一个Affine层和一个Softmax-with-Loss层组成。由于之前已经实现了各层的类,现在只要用"搭积木"的方式将它们拼接在一起就可以了。

将TwoLayerNet类的代码实现改进如下:

python 复制代码
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict

class TwoLayerNet:

    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01):
        # 初始化权重
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)

        # 生成层
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])

        self.lastLayer = SoftmaxWithLoss()
        
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        return x
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
         for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads
相关推荐
童话名剑1 天前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
YMWM_1 天前
深度学习中模型的推理和训练
人工智能·深度学习
weixin_395448911 天前
export_onnx.py_0130
pytorch·python·深度学习
工程师老罗1 天前
反向传播及其用法
pytorch
抠头专注python环境配置1 天前
基于Pytorch ResNet50 的珍稀野生动物识别系统(Python源码 + PyQt5 + 数据集)
pytorch·python
~kiss~1 天前
大模型中激活函数、前馈神经网络 (FFN) 的本质
人工智能·深度学习·神经网络
Keep_Trying_Go1 天前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
三水不滴1 天前
Redis缓存更新策略
数据库·经验分享·redis·笔记·后端·缓存
懒羊羊吃辣条1 天前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列
ziqi5221 天前
第二十四天笔记
笔记