Python案例 |地图绘制及分级着色

1、分级着色地图

分级着色地图常用于可视化地理数据,比如人口密度、经济数据、气候变化等。其原理是使用颜色或阴影的渐变来表示不同区域(如国家、省份、城市等)中的数据差异。例如,地图上的每个区域根据其代表的数值被着色,通常数值越大,颜色越深。

2、案例1

import plotly.express as px
import pandas as pd

# 将数据转化为pandas DataFrame
data = {
    'Country': ['Australia', 'United States', 'Brazil', 'Russia', 'India', 'South Africa', ],
    'Value': [100, 90, 80, 70, 85, 95]
}

df = pd.DataFrame(data)

# 创建Choropleth地图
fig = px.choropleth(
    df,
    locations='Country',
    locationmode='country names',
    color='Value', color_continuous_scale='Blues',
    title='分级着色地图'
)
# 显示地图
fig.show()

运行结果:

2、案例2

import pandas as pd
import plotly.express as px
import numpy as np
import json

with open("china_province.geojson", encoding='utf8') as f:
    provinces_map = json.load(f)

df = pd.read_csv('data.csv')

df.确诊 = df.确诊.map(np.log)   # 由于各省确诊数据差距较大,数据尺度大,将所有数据采用对数形式
print(df.确诊)
fig = px.choropleth_mapbox(
    df,
    geojson=provinces_map,
    color='确诊',
    locations="地区",
    featureidkey="properties.NL_NAME_1",
    mapbox_style="carto-darkmatter",
    color_continuous_scale='viridis',
    center={"lat": 37.110573, "lon": 106.493924},
    zoom=3,
    hover_name="地区",
    hover_data=["确诊", "疑似", "治愈", "死亡"],
)
# fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show()

运行结果:

参考资料

https://blog.csdn.net/u010099080/article/details/104543491

https://github.com/secsilm/plotly-choropleth-mapbox-demo

相关推荐
小魏冬琅10 分钟前
探索面向对象的高级特性与设计模式(2/5)
java·开发语言
lihao lihao13 分钟前
C++stack和queue的模拟实现
开发语言·c++
TT哇25 分钟前
【Java】数组的定义与使用
java·开发语言·笔记
天天进步201529 分钟前
Lodash:现代 JavaScript 开发的瑞士军刀
开发语言·javascript·ecmascript
假装我不帅38 分钟前
js实现类似与jquery的find方法
开发语言·javascript·jquery
look_outs42 分钟前
JavaSE笔记2】面向对象
java·开发语言
萧鼎43 分钟前
【Python】高效数据处理:使用Dask处理大规模数据
开发语言·python
互联网杂货铺1 小时前
Python测试框架—pytest详解
自动化测试·软件测试·python·测试工具·测试用例·pytest·1024程序员节
Ellie陈1 小时前
Java已死,大模型才是未来?
java·开发语言·前端·后端·python
@嘿1111 小时前
【Java】static静态变量(016)
java·开发语言