text2sql: multi-agent实现思路MAC-SQL

MAC-SQL出自2023年12月的论文《MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL》(github),它是用基于LLM的multi-agent来实现text2sql。

MAC-SQL的整体思路如论文图2所示,由Decomposer、Selector、Refiner三个agent组成,个人觉得除了有multi-agent的思想外,MAC-SQL与DIN-SQL的思路很类似。

MAC-SQL的三个agent的协作过程如论文算法1所示。

接下来分别介绍MAC-SQL三个agent的实现:

  • Selector:其作用是schema linking,选择只与问题相关的数据库schema元素,其prompt如下图所示。值得注意的是,论文强调了只有在数据库schema对应的prompt长度超过了长度阈值时才会被激活,否则直接使用原始的数据库schema。
  • Decomposer: 在生成最终SQL之前生成一系列的中间步骤来提高LLM的推理能力。如论文图2所示意,Decomposer指导LLM将原始复杂问题分解成推理步骤后生成最后的SQL查询。作者使用CoT来生成子问题和其对应的SQL,实现时会先判断用户问题的难易程度,如果用户的问题比较简单,则直接生成SQL;如果用户的问题很复杂,则先生成子问题对应的SQL,逐步得到最终的SQL。在in-context learning时使用了few-shot例子。

    python 复制代码
    decomposer_prompt = '''
    Given a [Database schema] description, a knowledge [Evidence] and the [Question], you need to use valid SQLite and understand the database and knowledge, and then decompose the question into subquestions for text-to-SQL generation.
    
    When generating SQL, we should always consider constraints:
    [Constraints]
    - In 'SELECT <column>', just select needed columns in the [Question] without any unnecessary column or value - In 'FROM <table>' or 'JOIN <table>', do not include unnecessary table 
    - If use max or min func, 'JOIN <table>' FIRST, THEN use 'SELECT MAX(<column>)' or 'SELECT MIN(<column>)' - If [Value examples] of <column> has 'None' or None, use 'JOIN <table>' or 'WHERE <column> is NOT NULL' is better 
    - If use 'ORDER BY <column> ASC|DESC', add 'GROUP BY <column>' before to select distinct values
    
    ==========
    
    [Database schema]
    # Table: frpm 
    [ 
    	(CDSCode, CDSCode. Value examples: ['01100170109835', '01100170112607'].), 
    	(Charter School (Y/N), Charter School (Y/N). Value examples: [ 1, 0, None] . And 0: N;. 1: Y),
      (Enrollment (Ages 5-17), Enrollment (Ages 5-17). Value examples: [5271.0, 4734.0].), 
      (Free Meal Count (Ages 5-17), Free Meal Count (Ages 5-17). Value examples: [ 3864.0, 2637.0 ].
    And eligible free rate = Free Meal Count / Enrollment) 
    ] 
    # Table: satscores 
    [ 
    	(cds, California Department Schools. Value examples: ['10101080000000', '10101080109991'].), 
    	(sname, school name. Value examples: [ 'None', 'Middle College High', 'John F. Kennedy High', 'Independence High', 'Foothill High'].),
      (NumTstTakr, Number of Test Takers in this school. Value examples: [ 24305, 4942, 1, 0, 280] . And number of test takers in each school),
      (AvgScrMath, average scores in Math. Value examples: [699, 698, 289, None, 492 ] . And average scores in Math), 
      (NumGE1500, Number of Test Takers Whose Total SAT Scores Are Greater or Equal to 1500. Value examples: [ 5837, 2125, 0, None, 191] . And Number of Test Takers Whose Total SAT Scores Are Greater or Equal to 1500. . commonsense evidence:. . Excellence Rate = NumGE1500 / NumTstTakr) 
    ]
    [Foreign keys]
    frpm.'CDSCode' = satscores.'cds'
    [Question]
    List school names of charter schools with an SAT excellence rate over the average.
    [Evidence]
    Charter schools refers to 'Charter School (Y/N)' = 1 in the table frpm; Excellence rate = NumGE1500 / NumTstTakr
    
    Decompose the question into sub questions, considering [Constraints], and generate the SQL after thinking step by step: 
    Sub question 1: Get the average value of SAT excellence rate of charter schools. 
    SQL 
    "'sql 
    SELECT AVG(CAST(T2.'NumGE1500' AS REAL) / T2.'NumTstTakr') 
    	FROM frpm AS T1 
    	INNER JOIN satscores AS T2 
    	ON T1.'CDSCode' = T2.'cds' 
    	WHERE T1.'Charter School (Y/N)' = 1 
    "'
    
    Sub question 2: List out school names of charter schools with an SAT excellence rate over the average. 
    SQL 
    "' sql 
    SELECT T2.'sname' 
    	FROM frpm AS T1 
    	INNER JOIN satscores AS T2 
    	ON T1.'CDSCode' = T2.'cds' 
    	WHERE T2.'sname' IS NOT NULL 
    	AND T1.'Charter School (Y/N)' = 1 
    	AND CAST(T2.'NumGE1500' AS REAL) / T2.'NumTstTakr' > ( 
    		SELECT AVG(CAST(T4.'NumGE1500' AS REAL) / T4.'NumTstTakr')
    		FROM frpm AS T3 
    		INNER JOIN satscores AS T4 
    		ON T3.'CDSCode' = T4.'cds' 
    		WHERE T3.'Charter School (Y/N)' = 1 
    		) 
    "' 
    
    Question Solved. 
    
    ==========
    
    [Database schema]
    # Table: account 
    [ 
    	(account_id, the id of the account. Value examples: [11382, 11362, 2, 1, 2367].), 
    	(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].),
      (frequency, frequency of the acount. Value examples: ['POPLATEK MESICNE', 'POPLATEK TYDNE', 'POPLATEK PO OBRATU'].), 
      (date, the creation date of the account. Value examples: ['1997-12-29', '1997-12-28'].) 
    ] 
    # Table: client 
    [ 
    	(client_id, the unique number. Value examples: [13998, 13971, 2, 1, 2839].), 
    	(gender, gender. Value examples: ['M', 'F']. And F:female . M:male ), 
    	(birth_date, birth date. Value examples: ['1987-09-27', '1986-08-13'].), 
    	(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].) 
    ] 
    # Table: district 
    [ 
    	(district_id, location of branch. Value examples: [77, 76, 2, 1, 39].), 
    	(A4, number of inhabitants . Value examples: ['95907', '95616', '94812'].), 
    	(A11, average salary. Value examples: [12541, 11277, 8114].) ]
    [Foreign keys]
    account.'district_id' = district.'district_id' 
    client.'district_id' = district.'district_id'
    [Question]
    What is the gender of the youngest client who opened account in the lowest average salary branch?[Evidence]
    Later birthdate refers to younger age; A11 refers to average salary 
    
    Decompose the question into sub questions, considering [Constraints], and generate the SQL after thinking step by step: 
    Sub question 1: What is the district_id of the branch with the lowest average salary?
    SQL 
    "' sql 
    SELECT 'district_id' 
    	FROM district 
    	ORDER BY 'A11' ASC 
    	LIMIT 1 
    "'
    Sub question 2: What is the youngest client who opened account in the lowest average salary branch? 
    SQL 
    "' sql 
    SELECT T1.'client_id' 
    	FROM client AS T1 
    	INNER JOIN district AS T2 
    	ON T1.'district_id' = T2.'district_id' 
    	ORDER BY T2.'A11' ASC, T1.'birth_date' DESC 
    	LIMIT 1 
    "'
    
    Sub question 3: What is the gender of the youngest client who opened account in the lowest average salary branch? 
    SQL 
    "' sql 
    SELECT T1.'gender' 
    	FROM client AS T1 
    	INNER JOIN district AS T2 
    	ON T1.'district_id' = T2.'district_id' 
    	ORDER BY T2.'A11' ASC, T1.'birth_date' DESC 
    	LIMIT 1 
    "' 
    Question Solved. 
    
    ==========
    
    [Database schema]
    {desc_str}
    [Foreign keys]
    {fk_str}
    [Question]
    {query}
    [Evidence]
    {evidence} 
    
    
    Decompose the question into sub questions, considering [Constraints], and generate the SQL after thinking step by step:
    '''
  • Refiner:其作用是为了检测到自动校正SQL错误,如论文图4所示意。如论文图2所示,在收到一个SQL查询之后,Refiner诊断SQL来评估器语法准确性、执行可行性,并从数据库中检索到非空结果。

    python 复制代码
    refiner_prompt = '''
    [Instruction]
    When executing SQL below, some errors occurred, please fix up SQL based on query and database info. Solve the task step by step if you need to. Using SQL format in the code block, and indicate script type in the code block. When you find an answer, verify the answer carefully. Include verifiable evidence in your response if possible.
    [Constraints]
    - In 'SELECT <column>', just select needed columns in the [Question] without any unnecessary column or value 
    - In 'FROM <table>' or 'JOIN <table>', do not include unnecessary table 
    - If use max or min func, 'JOIN <table>' FIRST, THEN use 'SELECT MAX(<column>)' or 'SELECT MIN(<column>)' - If [Value examples] of <column> has 'None' or None, use 'JOIN <table>' or 'WHERE <column> is NOT NULL' is better 
    - If use 'ORDER BY <column> ASC|DESC', add 'GROUP BY <column>' before to select distinct values
    [Query]
    {query}
    [Evidence]
    {evidence}
    [Database info]
    {desc_str}
    [Foreign keys]
    {fk_str}
    [old SQL]
    "' sql 
    {sql} 
    "'
    [SQLite error]
    {sqlite_error}
    [Exception class]
    {exception_class}
    
    Now please fixup old SQL and generate new SQL again.[correct SQL]
    '''

除了MAC-SQL思路外,论文作者还尝试构建了一个用于微调LLM的mulit-agent任务指令集,并用这个指令集微调了Code Llama 7B模型得到了开源模型SQL-Llama。

相关推荐
好评笔记2 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
一 铭2 小时前
《Hands_On_LLM》8.2 RAG: 利用语言模型进行语义搜索(Semantic Search with Language Models)
人工智能·语言模型·大模型·llm
XLYcmy4 小时前
三篇物联网漏洞挖掘综述
论文阅读·物联网·网络安全·静态分析·漏洞挖掘·动态分析·固件
网安打工仔6 小时前
斯坦福李飞飞最新巨著《AI Agent综述》
人工智能·自然语言处理·大模型·llm·agent·ai大模型·大模型入门
健忘的派大星6 小时前
【AI大模型】根据官方案例使用milvus向量数据库打造问答RAG系统
人工智能·ai·语言模型·llm·milvus·agi·rag
__如果14 小时前
论文阅读--Qwen2&2.5技术报告
论文阅读·qwen
好评笔记15 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
zenpluck15 小时前
GS论文阅读--GeoTexDensifier
论文阅读
feifeikon1 天前
大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
论文阅读
墨绿色的摆渡人1 天前
论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(一)
论文阅读