Elasticsearch 入门

ES 概述

ES 是一个开源的高扩展的分布式全文搜索引擎。

倒排索引

环境准备

Elasticsearch 官方地址:https://www.elastic.co/cn/

下载地址:

注意:9300 端口为 Elasticsearch 集群间组件的通信端口,9200 端口为浏览器访问的 http

在浏览器中访问:http://localhost:9200

ES VS Mysql

与 MySQL 中概念对比

Types 的概念已经被逐渐弱化,Elasticsearch 6.X 中,一个 index 下已经只能包含一个 type,Elasticsearch 7.X 中, Type 的概念已经被删除了。

版本 Type
5.x 支持多个 type
6.x 只能有一种 type
7.x 默认不再支持自定义 type (默认类型为:_doc)

ES 操作

GET,PUT,DELTE,HEAD 操作具有幂等性,POST 操作不具有幂等性。

DSL 其实是 Domain Specific Language 的缩写,中文翻译为领域特定语言。

索引操作

apl 复制代码
# 创建索引
PUT shopping
json 复制代码
{
 "acknowledged"【响应结果】: true, # true 操作成功
 "shards_acknowledged"【分片结果】: true, # 分片操作成功
 "index"【索引名称】: "shopping"
}

注意:创建索引库的分片数默认 1 片,在 7.0.0 之前的 Elasticsearch 版本中,默认 5 片

apl 复制代码
# 查看索引
GET shopping
json 复制代码
{
 "shopping"【索引名】: {
 "aliases"【别名】: {},
 "mappings"【映射】: {},
 "settings"【设置】: {
 "index"【设置 - 索引】: {
 "creation_date"【设置 - 索引 - 创建时间】: "1614265373911",
 "number_of_shards"【设置 - 索引 - 主分片数量】: "1",
 "number_of_replicas"【设置 - 索引 - 副分片数量】: "1",
 "uuid"【设置 - 索引 - 唯一标识】: "eI5wemRERTumxGCc1bAk2A",
 "version"【设置 - 索引 - 版本】: {
 "created": "7080099"
 },
 "provided_name"【设置 - 索引 - 名称】: "shopping"
 }
 }
 }
}
apl 复制代码
# 删除索引
DELETE shopping

文档操作

创建文档

apl 复制代码
# 自动生成 ID
POST shopping/_doc
{
  "title": "小米手机",
  "category": "小米",
  "images": "http://www.gulixueyuan.com/xm.jpg",
  "price": 3999
}

# 指定 ID(具有幂等性可以使用 PUT 命令)
PUT shopping/_doc/1001
{
  "title": "小米手机",
  "category": "小米",
  "images": "http://www.gulixueyuan.com/xm.jpg",
  "price": 3999
}

文档检索

apl 复制代码
# 全部查询
GET shopping/_doc/_search

# 主键查询
GET shopping/_doc/1001

修改文档

apl 复制代码
# 全量修改
PUT shopping/_doc/1001
{
  "title": "小米手机2",
  "category": "小米2",
  "images": "http://www.gulixueyuan.com/xm.jpg",
  "price": 4999
}

ES 的 update 只是在ES内部查询出来后,再覆盖。excludes 的字段的数据会丢失。

apl 复制代码
# 局部修改
POST shopping/_update/1001
{
  "doc": {
    "title":"华为手机"
  }
}

删除文档

apl 复制代码
DELETE shopping/_doc/9H58aXwBfxge3XJyFrMl

高级查询

条件查询

apl 复制代码
# 条件查询
# select * from shopping where category='小米'
# match 会把 query 进行分词,多个词之间是 or 关系
GET shopping/_search
{
  "query": {
    "match": {
      "category": "小米"
    }
  }
}

# 分页查询
# select title,price from shopping where category='小米' order by price desc limit 0,2
GET shopping/_search
{
  "query": {
    "match": {
      "category": "小米"
    }
  },
  "from": 0,
  "size": 2,
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ],
  "_source": [
    "title",
    "price"
  ]
}

多条件查询:and or

apl 复制代码
# select * from shopping where category='小米' and price>= 5000
GET shopping/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "category": "小米"
          }
        },
        {
        # 范围查询
          "range": {
            "price": {
              "gte": 5000
            }
          }
        }
      ]
    }
  }
}

# select * from shopping where category like '%小米%' or category like '%华为%'
GET shopping/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "category": "小米"
          }
        },
        {
          "match": {
            "category": "华为"
          }
        }
      ]
    }
  }
}

# select * from shopping where not category like '%小米%'
GET shopping/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "match": {
            "category": "小米"
          }
        }
      ]
    }
  }
}

# select * from shopping where category like '%手机%' or title like '%手机%'
# multi_match 与 match 类似,不同的是它可以在多个字段中查询
GET shopping/_search
{
  "query": {
    "multi_match": {
      "query": "手机",
      "fields": [
        "category",
        "title"
      ]
    }
  }
}

# 中文分词
GET _analyze
{
  "text": ["小米","华为"]
}

# 中文分词
GET _analyze
{
  "text": ["Elasticsearch built-in security"]
}

GET _analyze
{
  "analyzer": "ik_smart",
  "text": ["小米","华为"]
}

GET _analyze
{
  "analyzer": "ik_smart",
  "text":"中华人民共和国国歌"
}

GET _analyze
{
  "analyzer": "ik_max_word",
  "text":"中华人民共和国国歌"
}

IK 分词器

  1. 下载:https://github.com/medcl/elasticsearch-analysis-ik/releases
  2. 解压:拷贝到 Elasticsearch 的 plugins 目录下:文件夹名称为 ik
  3. 重启:Elasticsearch

聚合查询

apl 复制代码
# price 平均值
# select avg(price) as price_avg from shopping
GET shopping/_search
{
  "aggs": {
    "price_avg": {
      "avg": {
        "field": "price"
      }
    }
  },
  "size": 0
}

# price 最小值
# select min(price) as price_min from shopping
# avg,min,max,sum
GET shopping/_search
{
  "aggs": {
    "price_min": {
      "min": {
        "field": "price"
      }
    }
  },
  "size": 0
}

# 同时返回:count,min,max,avg,sum
GET shopping/_search
{
  "aggs": {
    "stats_price": {
      "stats": {
        "field": "price"
      }
    }
  },
  "size": 0
}

# select price as key,count(1) as doc_count  from shopping group by price
GET shopping/_search
{
  "aggs": {
    "category_group": {
      "terms": {
        "field": "price"
      }
    }
  },
  "size": 0
}

映射关系

apl 复制代码
# name:分词并建倒排索引
# sex:不分词,建倒排索引
# tel:不建倒排索引
PUT user
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "index": true
      },
      "sex": {
        "type": "keyword",
        "index": true
      },
      "tel": {
        "type": "text",
        "index": false 
      }
    }
  }
}

# 查看索引 mapping
GET user/_mapping

# 插入测试数据
POST user/_bulk
{"index":{"_id":"1001"}}
{"name":"张三","sex":"男生","tel":"1111"}
{"index":{"_id":"1002"}}
{"name":"李四","sex":"男生","tel":"2222"}
{"index":{"_id":"1003"}}
{"name":"王五","sex":"女生","tel":"3333"}


GET user/_search
{
  "query": {
    "match": {
      "name": "张"
    }
  }
}

GET user/_search
{
  "query": {
    "match": {
      "sex": "男"
    }
  }
}

GET user/_search
{
  "query": {
    "match": {
      "tel": "1111"
    }
  }
}

# keyword 可以聚合
GET user/_search
{
  "aggs": {
    "sex_group": {
      "terms": {
        "field": "sex"
      }
    }
  },
  "size": 0
}

# text 不可以聚合
GET user/_search
{
  "aggs": {
    "name_group": {
      "terms": {
        "field": "name"
      }
    }
  },
  "size": 0
}

常见 type 类型

  • String 类型
    • text:可分词
    • keyword:不可分词,数据会作为完整字段进行匹配
  • Numerica:数值型
    • 基本数据类型:long、integer、short、byte、double、float、half_float
    • 浮点的高精度类型:sacled_float
  • Date:日期类型
  • Array:数组类型
  • Object:对象

Java API 操作

依赖

xml 复制代码
 <dependencies>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>7.8.0</version>
        </dependency>
        <!-- elasticsearch 的客户端 -->
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>elasticsearch-rest-high-level-client</artifactId>
            <version>7.8.0</version>
        </dependency>
        <!-- elasticsearch 依赖 2.x 的 log4j -->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>2.8.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.78</version>
        </dependency>

        <!-- junit 单元测试 -->
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
    </dependencies>

环境测试

java 复制代码
public class EsClient {
    public static void main(String[] args) throws IOException {
        // 创建 ES 客户端
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        // 关闭 ES 客户端
        esClient.close();
    }
}

索引操作

创建索引

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        CreateIndexRequest request = new CreateIndexRequest("user_v1");
        CreateIndexResponse response = esClient.indices().create(request, RequestOptions.DEFAULT);

        System.out.println(response.isAcknowledged());
        esClient.close();
    }

查询索引信息

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        GetIndexRequest request = new GetIndexRequest("user_v1");
        GetIndexResponse response = esClient.indices().get(request, RequestOptions.DEFAULT);

        System.out.println(response.getMappings());
        System.out.println(response.getAliases());
        System.out.println(response.getSettings());
        esClient.close();
    }

删除索引信息

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        DeleteIndexRequest request = new DeleteIndexRequest("user_v1");
        AcknowledgedResponse delete = esClient.indices().delete(request, RequestOptions.DEFAULT);

        System.out.println(delete.isAcknowledged());
        esClient.close();
    }

文档操作

创建文档

java 复制代码
public class EsDocCreate {
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        IndexRequest request = new IndexRequest("user_v1");
        request.id("1003");
        User user = new User("张三", "男生", "1111");
        request.source(JSON.toJSONString(user), XContentType.JSON);

        IndexResponse index = esClient.index(request, RequestOptions.DEFAULT);
      
        System.out.println(index.getResult());
        esClient.close();
    }

局部修改

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        // 局部修改
        UpdateRequest request = new UpdateRequest("user_v1", "1003");
        request.doc(XContentType.JSON, "name", "zhangsan");

        UpdateResponse response = esClient.update(request, RequestOptions.DEFAULT);
      
        System.out.println(response.getResult());
        esClient.close();
    }

根据ID 检索文档

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));
        
        GetRequest request = new GetRequest("user_v1", "1003");
        GetResponse response = esClient.get(request, RequestOptions.DEFAULT);
        
        System.out.println(response.getSource());
        esClient.close();
    }

文档删除

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        DeleteRequest request = new DeleteRequest("user_v1", "1002");
        DeleteResponse response = esClient.delete(request, RequestOptions.DEFAULT);

        System.out.println(response.getResult());
        esClient.close();
    }

批量更新

将操作打包,批量发送给 ES 集群。

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        BulkRequest request = new BulkRequest();

       // 新增
        IndexRequest indexRequest = new IndexRequest("user_v1");
        indexRequest.id("1004");
        indexRequest.source(JSON.toJSONString(new User("李四", "男生", "4444")), XContentType.JSON);

      	// 新增
        IndexRequest indexRequest2 = new IndexRequest("user_v1");
        indexRequest2.id("1005");
        indexRequest2.source(JSON.toJSONString(new User("王五", "女生", "5555")), XContentType.JSON);

      	// 删除
        DeleteRequest deleteRequest = new DeleteRequest("user_v1", "1001");

        request.add(indexRequest);
        request.add(indexRequest2);
        request.add(deleteRequest);

        BulkResponse responses = esClient.bulk(request, RequestOptions.DEFAULT);
      
        System.out.println(responses.getItems());
        esClient.close();
    }

高级检索

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        SearchRequest request = new SearchRequest("user_v1");
        // 检索全部数据
        request.source(new SearchSourceBuilder().query(QueryBuilders.matchAllQuery()));
        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        for (SearchHit searchHit : response.getHits()) {
            System.out.println(searchHit.getSourceAsString());
        }
        esClient.close();
    }
java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        SearchRequest request = new SearchRequest("shopping");
        request.source(new SearchSourceBuilder()
                .query(QueryBuilders.matchQuery("category", "小米"))
                .from(0) // 分页
                .size(10)
                .sort("price", SortOrder.DESC) // 排序
        );

//        request.source(new SearchSourceBuilder().query(QueryBuilders.termQuery("category","小米")));
        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        for (SearchHit searchHit : response.getHits()) {
            System.out.println(searchHit.getSourceAsString());
        }
        esClient.close();
    }

多条件检索

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        // 构建查询的请求体
        SearchSourceBuilder sourceBuilder  = new SearchSourceBuilder();

        BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();

        // and
        boolQueryBuilder.must(QueryBuilders.matchQuery("category","小米"));

        // not
        boolQueryBuilder.mustNot(QueryBuilders.matchQuery("price","5999"));

        // or
        boolQueryBuilder.should(QueryBuilders.matchQuery("category","华为"));
      
        sourceBuilder.query(boolQueryBuilder);
      
        SearchRequest request = new SearchRequest("shopping");
			  request.source(sourceBuilder);
        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        for (SearchHit searchHit : response.getHits()) {
            System.out.println(searchHit.getSourceAsString());
        }
        esClient.close();
    }
java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        // 构建高亮字段
        HighlightBuilder highlightBuilder = new HighlightBuilder();
        highlightBuilder.preTags("<font color='red'>");
        highlightBuilder.postTags("</font>");
        highlightBuilder.field("name");

        SearchRequest request = new SearchRequest("shopping");
        request.source(new SearchSourceBuilder()
                .query(QueryBuilders.rangeQuery("price")
                        .gt(0)   // 范围查询
                        .lt(6000))
                .highlighter(highlightBuilder));

        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        for (SearchHit searchHit : response.getHits()) {
            System.out.println(searchHit.getSourceAsString());
        }
        esClient.close();
    }

聚合

java 复制代码
    public static void main(String[] args) throws IOException {
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        SearchRequest request = new SearchRequest("shopping");
        request.source(new SearchSourceBuilder().aggregation(AggregationBuilders.max("maxPrice").field("price")));
//   request.source(new SearchSourceBuilder().aggregation(AggregationBuilders.min("minPrice").field("price")));
//   request.source(new SearchSourceBuilder().aggregation(AggregationBuilders.avg("avgPrice").field("price")));

        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        if (response.getAggregations().iterator().hasNext()) {
            ParsedMax parsedMax = (ParsedMax) response.getAggregations().iterator().next();
//            ParsedMin parsedMin = (ParsedMin) response.getAggregations().iterator().next();
//            ParsedAvg parsedAvg = (ParsedAvg) response.getAggregations().iterator().next();
            System.out.println(parsedMax.getValue());
        }

        System.out.println(response);
        esClient.close();
    }

分组聚合

java 复制代码
        RestHighLevelClient esClient = new RestHighLevelClient(
                RestClient.builder(new HttpHost("127.0.0.1", 9200, "http")));

        SearchRequest request = new SearchRequest("shopping");
        request.source(new SearchSourceBuilder().aggregation(AggregationBuilders.terms("price_group").field("price")));

        SearchResponse response = esClient.search(request, RequestOptions.DEFAULT);

        if (response.getAggregations().iterator().hasNext()) {
            ParsedLongTerms parsedMax = (ParsedLongTerms) response.getAggregations().iterator().next();
            for (Terms.Bucket bucket : parsedMax.getBuckets()) {
                System.out.println(bucket.getKey() + "\t" + bucket.getDocCount());
            }
        }
        esClient.close();

ES 集群

单点服务器的问题:

  • 存储容量有限
  • 容易出现单点故障,无法实现高可用
  • 并发处理能力有限

搭建集群

修改配置文件

node.master:表示节点是否具有成为主节点的资格。

node.data:表示节点是否存储数据。

Node 节点组合:

  • 主节点 + 数据节点(master + data)即有称为主节点的资格,又存储数据
  • 数据节点(data):不参与选举,只会存储数据
  • 客户端节点(client):不会成为主节点,也不会存储数据,主要是针对海量请求的时候,可以进行负载均衡

一个 Mac 上起 3 es 进程

添加如下配置:config/elasticsearch.yml

节点1 配置

yaml 复制代码
# 加入如下配置
# 集群名称
cluster.name: my-application
# 节点名称,每个节点的名称不能重复 
node.name: node-01
# 是不是有资格主节点 
node.master: true 
node.data: true 

http.port: 9201
transport.tcp.port: 9301

# head 插件需要这打开这两个配置
http.cors.allow-origin: "*"
http.cors.enabled: true


cluster.initial_master_nodes: ["node-01", "node-02", "node-03"]
discovery.seed_hosts: ["127.0.0.1:9301", "127.0.0.1:9302", "127.0.0.1:9303"]

节点2 配置

yaml 复制代码
# 加入如下配置
# 集群名称
cluster.name: my-application
# 节点名称,每个节点的名称不能重复 
node.name: node-02
# 是不是有资格主节点 
node.master: true 
node.data: true 

http.port: 9202
transport.tcp.port: 9302

# head 插件需要这打开这两个配置
http.cors.allow-origin: "*"
http.cors.enabled: true

cluster.initial_master_nodes: ["node-01", "node-02", "node-03"]
discovery.seed_hosts: ["127.0.0.1:9301", "127.0.0.1:9302", "127.0.0.1:9303"]

节点3 配置

yaml 复制代码
# 加入如下配置
#集群名称
cluster.name: my-application
#节点名称,每个节点的名称不能重复 
node.name: node-03
#是不是有资格主节点 
node.master: true 
node.data: true 

http.port: 9203
transport.tcp.port: 9303

# head 插件需要这打开这两个配置
http.cors.allow-origin: "*"
http.cors.enabled: true

cluster.initial_master_nodes: ["node-01", "node-02", "node-03"]
discovery.seed_hosts: ["127.0.0.1:9301", "127.0.0.1:9302", "127.0.0.1:9303"]

注意:

  1. yaml 中数组第一个元素前必须有空格。
  2. 在启动 ES 节点前,将 data 目录下的数据清空。
json 复制代码
// http://127.0.0.1:9201/_cluster/health
{
	"cluster_name": "my-application",
	"status": "green",
	"timed_out": false,
	"number_of_nodes": 3,
	"number_of_data_nodes": 3,
	"active_primary_shards": 1,
	"active_shards": 2,
	"relocating_shards": 0,
	"initializing_shards": 0,
	"unassigned_shards": 0,
	"delayed_unassigned_shards": 0,
	"number_of_pending_tasks": 0,
	"number_of_in_flight_fetch": 0,
	"task_max_waiting_in_queue_millis": 0,
	"active_shards_percent_as_number": 100.0
}

http://127.0.0.1:9201/_cat/nodes

192.168.3.228 22 79 23 2.61   cdfhilmrstw - node-02
192.168.3.228 19 79 23 2.61   cdfhilmrstw * node-01
192.168.3.228 18 79 17 2.61   cdfhilmrstw - node-03

配置 kibana

配置:config/kibana.yml

python 复制代码
# 默认值:http://localhost:9200
elasticsearch.hosts: ["http://localhost:9201", "http://localhost:9202", "http://localhost:9203"]

启动 kibana

shell 复制代码
bin/kibana

ES 进阶

核心概念

分片

分片:类似数据库中分库分表的概念。

分片的优点

  • 可以水平分割/扩展内容容量
  • 在分片之上可以进行分布式并行操作,进而提高性能/吞吐量

一个分片就是一个 Lucene 索引。

副本

副本:分片的备份,类似数据库中的从库。

副本的优点

  • 防止数据丢失,提供高可用性。一本主分片和副本不会放在同一个节点上。
  • 扩展吞吐量,因为搜索可以在所有副本上并行运行。

写流程

新建,删除

  1. 客户端向 Node 1 发送新建、索引、删除请求(Node 1 是协调节点)。
  2. Node 1 根据文档 _id 计算出属于 分片 0,通过集群状态中的内容路由表,获知分片 0 的主分片位于 Node3,于是将请求转发给 Node 3。
  3. Node 3 在主分片上执行请求(写请求),如果成功,它转发到 Node 1 和 Node 2 的副分片上。当所有的副节点报告成功,Node 3 报告成功给协调节点(Node 1),协调节点在报告给客户端。

路由算法

路由计算公式:shard_num = hash( _routing) % num_primary_shards

默认情况:_routing 值就是文档 id

这就是为什么主分片数在创建索引时定义而且不能修改

局部更新

  1. 客户端向 Node 1 发送一个更新请求。
  2. 路由到 0 分片上,于是将请求转发给 Node 3(因为Node 3 有 0 主分片)
  3. Node 3 从主分片上检索出文档,修改 _source 字段的 Json,然后在主分片上重建索引。如果有其他进程修改了文档,它以 retry_on_conflict 设置的次数重复步骤3,都未成功则放弃。
  4. 如果 Node 3 成功更新了文档,它同时转发(异步,不保证顺序)文档到 Node1 和 Node 2 上的复制分片上重建索引。当所有复制节点报告成功,Node 3 放回成功给请求节点(Node 1),然后返回给客户端。

GET 流程

  1. 客户端向 Node 1 发送 get 请求。
  2. 路由到 分片 0,分片 0 在 3 个节点上都有。此时它转发给 Node 2.
  3. Node 2 返回 endangered 给 Node 1,Node 1 返回给客户端。

注意:对于读请求,为了负载平衡,请求节点( Node1 )会为每一个请求选择不同的分片(循环所有分片副本)。

多文档模式

MGet

  1. 客户端向 Node 1发送 mget 请求。
  2. Node 1,为每个分片构建一个多条数据的检索,然后转发这些请求去所需的主分片或者复制分片上。当所有回复被接收,Node 1 构建响应并返回给客户端。

bulk

  1. 客户端向 Node 1发送 bulk 请求。
  2. Node 1,为每个分片构建批量请求,然后转到这些所需的主分片上。
  3. 主分片顺序执行操作。当一个操作执行完毕后,主分片转发新文档(或者删除部分)给对应的复制分片,然后执行下一个操作。复制节点报告所有操作完成,节点报告给请求节点(Node 1),Node 1 构建响应并返回给客户端。

query 阶段

  1. 客户端发送 search 请求到 Node3(协调节点)
  2. Node 3 将请求转发到索引的每个主分片或者副分片
  3. 每个分片在本地执行查询,并使用本地的 Term/Document Frequency 信息进行打分,添加结果到大小为 from + size 的本地有序队列中。
  4. 每个分片返回各自优先队列中所有的文档 ID 和排序值给协调节点,协调节点合并这些值到自己的优先级队列中,产生一个全局排序后的列表。

注意: 为了避免在协调节点中创建的 number_of_shards * ( from + size ) 优先队列过大,应尽量控制分页深度。

fetch 阶段

  1. 协调节点向相关 Node 发送 MGET 请求。
  2. 分片所在节点向协调节点返回数据。
  3. 协调节点等待所有文档被取得,然后返回给客户端。

ES 集成

Spring Data 框架集成

Spring Data 是一个用于简化数据库、非关系型数据库、索引库访问,并支持云服务的

开源框架。

Spring Data Elasticsearch

官方网站: https://spring.io/projects/spring-data-elasticsearch

mvn 依赖

xml 复制代码
    <dependencies>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-test</artifactId>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-test</artifactId>
        </dependency>
    </dependencies>

配置文件:application.properties

properties 复制代码
# es服务地址
elasticsearch.host=127.0.0.1
# es服务端口
elasticsearch.port=9200
# 配置日志级别,开启 debug 日志
logging.level.com.atguigu.es=debug

索引操作

java 复制代码
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataIndexTest {
    // 注入 ElasticsearchRestTemplate
    @Autowired
    private ElasticsearchRestTemplate elasticsearchRestTemplate;

    @Test
    public void createIndex() {
        // 创建索引,系统会自动化创建索引
        System.out.println("创建索引");
    }

    @Test
    public void deleteIndex() {
        elasticsearchRestTemplate.deleteIndex(Product.class);
    }
}

文档操作

java 复制代码
@Repository
public interface ProductDao extends ElasticsearchRepository<Product,Long> {
}

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataESProductDaoTest {
    @Autowired
    ProductDao productDao;

    // 新增
    @Test
    public void save() {
        Product product = Product.builder()
                .id(1L)
                .title("华为手机")
                .category("手机")
                .price(9999.0)
                .images("https://xavatar.imedao.com/community/201011/1293612628607-20121221.png!240x240.jpg")
                .build();

        productDao.save(product);
    }

    // 修改
    @Test
    public void update() {
        Product product = Product.builder()
                .id(1L)
                .title("小米手机")
                .category("手机")
                .price(9999.0)
                .images("https://xavatar.imedao.com/community/201011/1293612628607-20121221.png!240x240.jpg")
                .build();
        productDao.save(product);
    }
    
    // 根据 Id 查询
    @Test
    public void findById() {
        Product product = productDao.findById(1L).get();
        System.out.println(product);
    }

    // 查询全部
    @Test
    public void findAll() {
        Iterable<Product> iterable = productDao.findAll();
        for (Product product : iterable) {
            System.out.println(product);
        }
    }

    // 删除
    @Test
    public void delete() {
        Product product = Product.builder().id(1L).build();
        productDao.delete(product);
    }

    // 批量插入
    @Test
    public void saveAll() {
        List<Product> productList = new ArrayList<>();
        for (int i = 0; i < 10; i++) {
            Product product = Product.builder()
                    .id(Long.valueOf(i))
                    .title(i + "小米手机")
                    .category("手机")
                    .price(9999.0 + i)
                    .images("https://xavatar.imedao.com/community/201011/1293612628607-20121221.png!240x240.jpg")
                    .build();
            productList.add(product);
        }
        productDao.saveAll(productList);
    }

    // 分页查询
    @Test
    public void findByPageable() {
        Sort sort = Sort.by(Sort.Direction.DESC, "id");
        int page = 0;
        int size = 5;
        PageRequest pageRequest = PageRequest.of(page, size, sort);
        Page<Product> data = productDao.findAll(pageRequest);
        for (Product product : data.getContent()) {
            System.out.println(product);
        }
    }
}

文档检索

java 复制代码
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringDataEsSearchTest {
    @Autowired
    ProductDao productDao;

  	// term 检索
    @Test
    public void termQuery(){
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
        Iterable<Product> iterable = productDao.search(termQueryBuilder);
        for (Product product : iterable) {
            System.out.println(product);
        }
    }

  	// term 检索加分页
    @Test
    public void termQueryByPage(){
        Sort sort = Sort.by(Sort.Direction.DESC, "id");
        int page = 0;
        int size = 5;
        PageRequest pageRequest = PageRequest.of(page, size, sort);
        TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("title", "小米");
        Iterable<Product> iterable = productDao.search(termQueryBuilder,pageRequest);
        for (Product product : iterable) {
            System.out.println(product);
        }
    }
}
相关推荐
DavidSoCool11 分钟前
es 3期 第25节-运用Rollup减少数据存储
大数据·elasticsearch·搜索引擎
Elastic 中国社区官方博客14 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
Elastic 中国社区官方博客3 小时前
设计新的 Kibana 仪表板布局以支持可折叠部分等
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
Dusk_橙子12 小时前
在elasticsearch中,document数据的写入流程如何?
大数据·elasticsearch·搜索引擎
喝醉酒的小白15 小时前
Elasticsearch 中,分片(Shards)数量上限?副本的数量?
大数据·elasticsearch·jenkins
熟透的蜗牛17 小时前
Elasticsearch 8.17.1 JAVA工具类
elasticsearch
普通网友19 小时前
Stable Diffusion 图片背景完美替换
人工智能·搜索引擎·ai作画·stable diffusion·midjourney
九圣残炎21 小时前
【ElasticSearch】 Java API Client 7.17文档
java·elasticsearch·搜索引擎
risc1234561 天前
【Elasticsearch】HNSW
elasticsearch
我的棉裤丢了1 天前
windows安装ES
大数据·elasticsearch·搜索引擎