DB-GPT 安装

从源代码开始安装,因为docker镜像库不能用了。。。

参考官网:

https://docs.dbgpt.site/docs/latest/quickstart

安装文档 - source

https://docs.dbgpt.site/docs/latest/installation/sourcecode

下载源代码

Download DB-GPT

git clone https://github.com/eosphoros-ai/DB-GPT.git

报错

remote: Counting objects: 100% (208/208), done.

remote: Compressing objects: 100% (175/175), done.

error: RPC failed; curl 56 GnuTLS recv error (-9): Error decoding the received TLS packet.

error: 57342 bytes of body are still expected

fetch-pack: unexpected disconnect while reading sideband packet

fatal: early EOF

fatal: fetch-pack: invalid index-pack output

奇怪 ,貌似我的这个Ubuntu有问题,不深究,从别的Ubuntu系统下载,然后拷贝过去

tar -zcvf DB-GPT.tgz DB-GPT/

scp DB-GPT.tgz root@192.168.254.194:/data/

下载minoconda和python

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod +x Miniconda3-latest-Linux-x86_64.sh

./Miniconda3-latest-Linux-x86_64.sh

You can undo this by running `conda init --reverse $SHELL`? [yes|no]

no\] \>\>\> 这里要选yes source \~/.bashrc 注意: Do you wish to update your shell profile to automatically initialize conda? This will activate conda on startup and change the command prompt when activated. If you'd prefer that conda's base environment not be activated on startup, run the following command when conda is activated: conda config --set auto_activate_base false You can undo this by running \`conda init --reverse $SHELL\` conda create -n dbgpt_env python=3.10 conda activate dbgpt_env cd /data/DB-GPT/ conda install pytorch conda install fastapi conda install python-dotenv conda install cachetools cd /data/DB-GPT/ pip install -e ".\[default\]" 提示: Running setup.py develop for dbgpt 很快完成 sudo yum install qemu-kvm libvirt libvirt-devel libguestfs-tools virt-install bridge-utils sudo systemctl start libvirtd sudo systemctl enable libvirtd sudo yum install virt-manager conda install pytorch 报错: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'ReadTimeoutError("HTTPSConnectionPool(host='repo.anaconda.com', port=443): Read timed out. (read timeout=9.15)")': /pkgs/main/linux-64/gmpy2-2.1.2-py310heeb90bb_0.conda 解决办法: conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ conda config --set show_channel_urls yes pip install -e ".\[default\]" 报错: Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━ 622.3/731.7 MB 489.4 kB/s eta 0:03:44 pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out. 网络问题,后面加个参数proxy配置即可 pip install -e ".[default]" --proxy http://myproxy:8086 export PYTHONPATH=/data/DB-GPT export PYTHONPATH=/data/DB-GPT models 需要下载 cd DB-GPT mkdir models and cd models # Add the Git LFS package repository curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh \| sudo bash # Update your package lists sudo apt-get update # Install Git LFS sudo apt install git-lfs # embedding model git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese # also you can use m3e-large model, you can choose one of them according to your needs # git clone https://huggingface.co/moka-ai/m3e-large # LLM model, if you use openai or Azure or tongyi llm api service, you don't need to download llm model git clone https://huggingface.co/THUDM/glm-4-9b-chat apt install rar rar a -v500m models.rar models/\* scp models.part00\*.rar root@192.168.254.194:/data/DB-GPT/ scp root@172.21.254.215:/mnt/bigstore/nfs_zstack/upload_zstack/temp/dbgpt.models/\*.rar 环境说明: model_name: glm-4-9b-chat model_path: /data/DB-GPT/models/glm-4-9b-chat ======================================== 启动DB-GPT的脚本 startDB-GPT.sh #!/bin/sh # conda activate dbgpt_env cd /data/DB-GPT /data/miniconda3/envs/dbgpt_env/bin/python dbgpt/app/dbgpt_server.py ======================================== db-gpt.service \[Unit

Description=My Conda Script Service DB-GPT

After=network.target

Service

Type=onshot

#simple

ExecStart=/data/startDB-GPT.sh

Restart=on-failure

User=root

Environment="PATH=/usr/bin:/data/miniconda3/condabin:$PATH"

WorkingDirectory=/data/DB-GPT

Environment="CONDA_DEFAULT_ENV=dbgpt_env"

StandardOutput=journal

StandardError=file://data/DB-GPT/error.log

Environment="CONDA_EXE=/data/miniconda3/bin/conda"

Environment="CONDA_PREFIX=/data/miniconda3/envs/dbgpt_env"

Environment="CONDA_PREFIX_1=/data/miniconda3"

Environment="CONDA_PROMPT_MODIFIER='(dbgpt_env) '"

Environment="CONDA_PYTHON_EXE=/data/miniconda3/bin/python"

Install

WantedBy=multi-user.target

相关推荐
Ai1731639157912 分钟前
英伟达RTX 6000 Ada 和L40S 对比,哪个更适合做深度学习?
图像处理·人工智能·gpt·深度学习·神经网络·机器学习·电脑
码界奇点20 分钟前
MongoDB 排序操作详解sort方法使用指南
数据库·mongodb·性能优化
武子康25 分钟前
Java-155 MongoDB Spring Boot 连接实战 | Template vs Repository(含索引与常见坑)
java·数据库·spring boot·后端·mongodb·系统架构·nosql
武子康26 分钟前
Java-157 MongoDB 存储引擎 WiredTiger vs InMemory:何时用、怎么配、如何验证 mongod.conf
java·数据库·sql·mongodb·性能优化·系统架构·nosql
野犬寒鸦33 分钟前
从零起步学习MySQL || 第八章:索引深入理解及高级运用(结合常见优化问题讲解)
java·服务器·数据库·后端·mysql
奥尔特星云大使1 小时前
Docker 拉取 MySQL 5.7 镜像、启动容器并进入 MySQL
数据库·mysql·docker·容器
mit6.8241 小时前
[nanoGPT] GPT模型架构 | `LayerNorm` | `CausalSelfAttention` |`MLP` | `Block`
gpt
低音钢琴2 小时前
【从零开始构建性能测试体系-08】如何诊断性能瓶颈:从服务器到数据库的全方位分析
服务器·数据库·php
蜡笔小炘3 小时前
SQL sever数据库--第三次作业
数据库·sql·oracle