python配合yolo分类模型开发分类软件

  1. 上一篇文章写了yolo的分类模型的训练,写篇文章基于yolo分类模型开发分类软件。
  2. 开发环境:pycharm,PySide6 6.6.1 ,PySide6-Addons 6.6.1,PySide6-Essentials 6.6.1,torch 2.3.1+cu121,torchaudio 2.3.1+cu121,torchvision 0.18.1+cu121,onnx 1.16.1,onnxruntime 1.17.3,opencv-contrib-python 4.10.0.82,opencv-python 4.10.0.82,opencv-python-headless 4.7.0.72
  3. 分类使用的数据集,halcon的pill分类demo的数据集
  4. 软件界面


  5. 核心代码
    yolo推理代码
bash 复制代码
  results = self.Model.predict(image_mat_)
            if(len(results)>0):
                ###获取分类名
                names_=results[0].names
                probs_=results[0].probs
                class_id_=probs_.top1
                class_socre_=probs_.top1conf.item()
                self.Classification=names_[class_id_]
                self.Sorce=str(class_socre_)

onnx推理核心代码

bash 复制代码
 			target_image_height_ = input_onnx_.shape[2]###获取输入的目标维度
            target_image_width_ = input_onnx_.shape[3]

            # image_mat_=image_mat_.resize(target_image_width_,target_image_height_)###缩放图片
            scale_image_mat_=cv2.resize(image_mat_,(target_image_width_,target_image_height_))
            print("ImageMatShape:", scale_image_mat_.shape)

            image_np_ = np.array(scale_image_mat_)  ###图片转成np数组
            print("ImageNpShape:", image_np_.shape)

            image_np_ = image_np_.transpose(2, 0, 1)  ##转成通道在前面的维度
            print("ImageNpShape:", image_np_.shape)

            resized_width = image_np_.shape[2]  ##获取图片输入输出
            resized_height = image_np_.shape[1]

            image_np_ = image_np_.reshape(1, 3, target_image_height_, target_image_width_)  ##添加一个新维度
            print(image_np_[0, 0, 0, 0])
            print("ImageNpShape:", image_np_.shape)

            image_np_ = image_np_.astype(np.float32)

            image_np_ = image_np_ / 255.0  ##数据归一化
            print(image_np_[0, 0, 0, 0])

            ###获取输出点
            outputs = self.OnnxModel.get_outputs()
            output_onnx_ = outputs[0]
            print("Name:", output_onnx_.name)
            print("Type:", output_onnx_.type)
            print("Shape:", output_onnx_.shape)

            ###运行推理
            outputs = self.OnnxModel.run(["output0"], {"images": image_np_})

            if(len(outputs)>0):
                ng_sorce_=outputs[0][0][0]
                ok_sorce_=outputs[0][0][1]

                if(ng_sorce_>ok_sorce_):
                    self.Classification="ng"
                    self.Sorce=str(ng_sorce_)
                else:
                    self.Classification="ok"
                    self.Sorce = str(ok_sorce_)
  1. 推理的效果显示

相关推荐
叫我:松哥29 分钟前
基于大数据和深度学习的智能空气质量监测与预测平台,采用Spark数据预处理,利用TensorFlow构建LSTM深度学习模型
大数据·python·深度学习·机器学习·spark·flask·lstm
吃茄子的猫7 小时前
quecpython中&的具体含义和使用场景
开发语言·python
じ☆冷颜〃7 小时前
黎曼几何驱动的算法与系统设计:理论、实践与跨领域应用
笔记·python·深度学习·网络协议·算法·机器学习
想进部的张同学7 小时前
hilinux-3599---设备学习---以及部署yolo
学习·yolo·海思
数据大魔方7 小时前
【期货量化实战】日内动量策略:顺势而为的短线交易法(Python源码)
开发语言·数据库·python·mysql·算法·github·程序员创富
APIshop7 小时前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
风送雨7 小时前
FastMCP 2.0 服务端开发教学文档(下)
服务器·前端·网络·人工智能·python·ai
效率客栈老秦8 小时前
Python Trae提示词开发实战(8):数据采集与清洗一体化方案让效率提升10倍
人工智能·python·ai·提示词·trae
哈里谢顿8 小时前
一条 Python 语句在 C 扩展里到底怎么跑
python
znhy_238 小时前
day46打卡
python