Week 5 Gage R&R

  • [Week 5 Gage R&R](#Week 5 Gage R&R)
    • [Prompt for GPT](#Prompt for GPT)
    • [Response from GPT](#Response from GPT)
    • [Fix bug](#Fix bug)

Week 5 Gage R&R

This assignment performs a Gage R&R analysis on the data height_recording.csv collected in class.

Prompt for GPT

复制代码
Dataset *height_recording.csv* has three columns: `Operator`, `Part`, and `Response`. The `Operator` column contains the name of the operator who took the measurement, the `Part` column contains the part number, and the `Response` column contains the height of the water in the glass. Please write codes by using the SixSigma::ss.rr function in R language to perform a Gage R&R analysis on the dataset `height_recording.csv`. The usage of the function SixSigma::ss.rr is as follows:
Gage R & R (Measurement System Assessment)
Description
Performs Gage R&R analysis for the assessment of the measurement system of a process. Related to the Measure phase of the DMAIC strategy of Six Sigma.

Usage
ss.rr(
  var,
  part,
  appr,
  lsl = NA,
  usl = NA,
  sigma = 6,
  tolerance = usl - lsl,
  data,
  main = "Six Sigma Gage R&R Study",
  sub = "",
  alphaLim = 0.05,
  errorTerm = "interaction",
  digits = 4,
  method = "crossed",
  print_plot = TRUE,
  signifstars = FALSE
)
Arguments
var	
Measured variable

part	
Factor for parts

appr	
Factor for appraisers (operators, machines, ...)

lsl	
Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance

usl	
Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance

sigma	
Numeric value for number of std deviations to use in calculating Study Variation

tolerance	
Numeric value for the tolerance

data	
Data frame containing the variables

main	
Main title for the graphic output

sub	
Subtitle for the graphic output (recommended the name of the project)

alphaLim	
Limit to take into account interaction

errorTerm	
Which term of the model should be used as error term (for the model with interation)

digits	
Number of decimal digits for output

method	
Character to specify the type of analysis to perform, "crossed" (default) or "nested"

print_plot	
if TRUE (default) the plots are printed. Change to FALSE to avoid printing plots.

signifstars	
if FALSE (default) the significance stars are ommitted. Change to TRUE to allow printing stars.

Details
Performs an R&R study for the measured variable, taking into account part and appraiser factors. It outputs the sources of Variability, and six graphs: bar chart with the sources of Variability, plots by appraiser, part and interaction and x-bar and R control charts.

Value
Analysis of Variance Table/s. Variance composition and %Study Var. Graphics.

anovaTable	
The ANOVA table of the model

anovaRed	
The ANOVA table of the reduced model (without interaction, only if interaction not significant)

varComp	
A matrix with the contribution of each component to the total variation

studyVar	
A matrix with the contribution to the study variation

ncat	
Number of distinct categories

Note
The F test for the main effects in the ANOVA table is usually made taken the operator/appraisal interaction as the error term (repeated measures model), thereby computing F as $MS_factor/MS_interaction$, e.g. in appendix A of AIAG MSA manual, in Montgomery (2009) and by statistical software such as Minitab. However, in the example provided in page 127 of the AIAG MSA Manual, the F test is performed as $MS_factor/MS_equipment$, i.e., repeatability. Thus, since version 0.9-3 of the SixSigma package, a new argument errorTerm controls which term should be used as error Term, one of "interaction", "repeatability".

Argument alphaLim is used as upper limit to use the full model, i.e., with interaction. Above this value for the interaction effect, the ANOVA table without the interaction effect is also obtained, and the variance components are computed pooling the interaction term with the repeatibility.

Tolerance can be calculaten from usl and lsl values or specified by hand.

The type of analysis to perform can be specified with the parameter method, "crossed" or "nested". Be sure to select the correct one and to have the data prepare for such type of analysis. If you don't know wich one is for you check it before. It is really important to perform the correct one. Otherwise results have no sense.

Response from GPT

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

Fix bug

Run the codes and there's an error:

复制代码
错误于if (!(var %in% names(data))) {: the condition has length > 1

Paste the error message to GPT-4o-Mini and then get the response:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable (ensure this is a single column)
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

GPT do not provide the correct codes at this time. I will try to fix the error by myself. By comparing the codes between MSA.R provided by TA and the response from GPT, I delete height_data$ in the var, part and appr argument, then the error is fixed. The correct codes are as follows:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = Response,     # Measured variable (ensure this is a single column)
  part = Part,         # Factor for parts
  appr = Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)
相关推荐
杜子不疼.5 小时前
计算机视觉热门模型手册:Faster R-CNN / YOLO / SAM 技术原理 + 应用场景对比
人工智能·计算机视觉·r语言·cnn
Davina_yu12 小时前
Windows 下升级 R 语言至最新版
开发语言·windows·r语言
青春不败 177-3266-05201 天前
基于R语言生物信息学大数据分析与绘图技术应用
数据分析·r语言·生物信息·生信·高通量
Catherinemin1 天前
【R语言】2.注释&基础运算
开发语言·r语言
邢博士谈科教2 天前
TCGA单基因高低分组的差异分析后的GSEA-GO和KEGG富集分析教程
数据分析·r语言
Catherinemin2 天前
【R语言】1.安装&基础语法
开发语言·r语言
Tiger Z3 天前
R 语言科研绘图 --- 3D绘图-汇总1
r语言·论文·科研·绘图·研究生
kisshuan123963 天前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
闻缺陷则喜何志丹4 天前
【二分查找】P9822 [ICPC2020 Shanghai R] Walker【有误差】|普及
开发语言·算法·r语言
qwerasda1238525 天前
【深度学习实战】基于Faster R-CNN的新鲜枣果品质智能检测与分类系统完整实现教程
深度学习·r语言·cnn