Week 5 Gage R&R

  • [Week 5 Gage R&R](#Week 5 Gage R&R)
    • [Prompt for GPT](#Prompt for GPT)
    • [Response from GPT](#Response from GPT)
    • [Fix bug](#Fix bug)

Week 5 Gage R&R

This assignment performs a Gage R&R analysis on the data height_recording.csv collected in class.

Prompt for GPT

复制代码
Dataset *height_recording.csv* has three columns: `Operator`, `Part`, and `Response`. The `Operator` column contains the name of the operator who took the measurement, the `Part` column contains the part number, and the `Response` column contains the height of the water in the glass. Please write codes by using the SixSigma::ss.rr function in R language to perform a Gage R&R analysis on the dataset `height_recording.csv`. The usage of the function SixSigma::ss.rr is as follows:
Gage R & R (Measurement System Assessment)
Description
Performs Gage R&R analysis for the assessment of the measurement system of a process. Related to the Measure phase of the DMAIC strategy of Six Sigma.

Usage
ss.rr(
  var,
  part,
  appr,
  lsl = NA,
  usl = NA,
  sigma = 6,
  tolerance = usl - lsl,
  data,
  main = "Six Sigma Gage R&R Study",
  sub = "",
  alphaLim = 0.05,
  errorTerm = "interaction",
  digits = 4,
  method = "crossed",
  print_plot = TRUE,
  signifstars = FALSE
)
Arguments
var	
Measured variable

part	
Factor for parts

appr	
Factor for appraisers (operators, machines, ...)

lsl	
Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance

usl	
Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance

sigma	
Numeric value for number of std deviations to use in calculating Study Variation

tolerance	
Numeric value for the tolerance

data	
Data frame containing the variables

main	
Main title for the graphic output

sub	
Subtitle for the graphic output (recommended the name of the project)

alphaLim	
Limit to take into account interaction

errorTerm	
Which term of the model should be used as error term (for the model with interation)

digits	
Number of decimal digits for output

method	
Character to specify the type of analysis to perform, "crossed" (default) or "nested"

print_plot	
if TRUE (default) the plots are printed. Change to FALSE to avoid printing plots.

signifstars	
if FALSE (default) the significance stars are ommitted. Change to TRUE to allow printing stars.

Details
Performs an R&R study for the measured variable, taking into account part and appraiser factors. It outputs the sources of Variability, and six graphs: bar chart with the sources of Variability, plots by appraiser, part and interaction and x-bar and R control charts.

Value
Analysis of Variance Table/s. Variance composition and %Study Var. Graphics.

anovaTable	
The ANOVA table of the model

anovaRed	
The ANOVA table of the reduced model (without interaction, only if interaction not significant)

varComp	
A matrix with the contribution of each component to the total variation

studyVar	
A matrix with the contribution to the study variation

ncat	
Number of distinct categories

Note
The F test for the main effects in the ANOVA table is usually made taken the operator/appraisal interaction as the error term (repeated measures model), thereby computing F as $MS_factor/MS_interaction$, e.g. in appendix A of AIAG MSA manual, in Montgomery (2009) and by statistical software such as Minitab. However, in the example provided in page 127 of the AIAG MSA Manual, the F test is performed as $MS_factor/MS_equipment$, i.e., repeatability. Thus, since version 0.9-3 of the SixSigma package, a new argument errorTerm controls which term should be used as error Term, one of "interaction", "repeatability".

Argument alphaLim is used as upper limit to use the full model, i.e., with interaction. Above this value for the interaction effect, the ANOVA table without the interaction effect is also obtained, and the variance components are computed pooling the interaction term with the repeatibility.

Tolerance can be calculaten from usl and lsl values or specified by hand.

The type of analysis to perform can be specified with the parameter method, "crossed" or "nested". Be sure to select the correct one and to have the data prepare for such type of analysis. If you don't know wich one is for you check it before. It is really important to perform the correct one. Otherwise results have no sense.

Response from GPT

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

Fix bug

Run the codes and there's an error:

复制代码
错误于if (!(var %in% names(data))) {: the condition has length > 1

Paste the error message to GPT-4o-Mini and then get the response:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable (ensure this is a single column)
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

GPT do not provide the correct codes at this time. I will try to fix the error by myself. By comparing the codes between MSA.R provided by TA and the response from GPT, I delete height_data$ in the var, part and appr argument, then the error is fixed. The correct codes are as follows:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = Response,     # Measured variable (ensure this is a single column)
  part = Part,         # Factor for parts
  appr = Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)
相关推荐
天桥下的卖艺者3 小时前
R语言绘制复杂加权数据(nhanes数据)多模型生存分析决策曲线
开发语言·r语言
Tiger Z6 小时前
《R for Data Science (2e)》免费中文翻译 (第15章) --- Regular expression(1)
数据分析·r语言·数据科学·免费书籍
Dekesas969517 小时前
【深度学习】基于Faster R-CNN的黄瓜幼苗智能识别与定位系统,农业AI新突破
人工智能·深度学习·r语言
青啊青斯1 天前
二、PaddlePaddle seal_recognition印章内容提取
人工智能·r语言·paddlepaddle
Piar1231sdafa1 天前
木结构建筑元素识别与分类:基于Faster R-CNN的高精度检测方法
分类·r语言·cnn
Piar1231sdafa1 天前
智能拖拉机目标检测:改进Faster R-CNN的实践与优化
目标检测·r语言·cnn
青春不败 177-3266-05202 天前
HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用
随机森林·r语言·生态学·生物多样性·生态环境·生物群落·物种分布
高-老师2 天前
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析
机器学习·r语言·biomod2
AAD555888993 天前
基于Mask R-CNN的道路路面损伤自动检测与分类研究
分类·r语言·cnn
Faker66363aaa4 天前
基于Faster R-CNN的桃黄病病害检测与分类系统实现_1
分类·r语言·cnn