Week 5 Gage R&R

  • [Week 5 Gage R&R](#Week 5 Gage R&R)
    • [Prompt for GPT](#Prompt for GPT)
    • [Response from GPT](#Response from GPT)
    • [Fix bug](#Fix bug)

Week 5 Gage R&R

This assignment performs a Gage R&R analysis on the data height_recording.csv collected in class.

Prompt for GPT

复制代码
Dataset *height_recording.csv* has three columns: `Operator`, `Part`, and `Response`. The `Operator` column contains the name of the operator who took the measurement, the `Part` column contains the part number, and the `Response` column contains the height of the water in the glass. Please write codes by using the SixSigma::ss.rr function in R language to perform a Gage R&R analysis on the dataset `height_recording.csv`. The usage of the function SixSigma::ss.rr is as follows:
Gage R & R (Measurement System Assessment)
Description
Performs Gage R&R analysis for the assessment of the measurement system of a process. Related to the Measure phase of the DMAIC strategy of Six Sigma.

Usage
ss.rr(
  var,
  part,
  appr,
  lsl = NA,
  usl = NA,
  sigma = 6,
  tolerance = usl - lsl,
  data,
  main = "Six Sigma Gage R&R Study",
  sub = "",
  alphaLim = 0.05,
  errorTerm = "interaction",
  digits = 4,
  method = "crossed",
  print_plot = TRUE,
  signifstars = FALSE
)
Arguments
var	
Measured variable

part	
Factor for parts

appr	
Factor for appraisers (operators, machines, ...)

lsl	
Numeric value of lower specification limit used with USL to calculate Study Variation as %Tolerance

usl	
Numeric value of upper specification limit used with LSL to calculate Study Variation as %Tolerance

sigma	
Numeric value for number of std deviations to use in calculating Study Variation

tolerance	
Numeric value for the tolerance

data	
Data frame containing the variables

main	
Main title for the graphic output

sub	
Subtitle for the graphic output (recommended the name of the project)

alphaLim	
Limit to take into account interaction

errorTerm	
Which term of the model should be used as error term (for the model with interation)

digits	
Number of decimal digits for output

method	
Character to specify the type of analysis to perform, "crossed" (default) or "nested"

print_plot	
if TRUE (default) the plots are printed. Change to FALSE to avoid printing plots.

signifstars	
if FALSE (default) the significance stars are ommitted. Change to TRUE to allow printing stars.

Details
Performs an R&R study for the measured variable, taking into account part and appraiser factors. It outputs the sources of Variability, and six graphs: bar chart with the sources of Variability, plots by appraiser, part and interaction and x-bar and R control charts.

Value
Analysis of Variance Table/s. Variance composition and %Study Var. Graphics.

anovaTable	
The ANOVA table of the model

anovaRed	
The ANOVA table of the reduced model (without interaction, only if interaction not significant)

varComp	
A matrix with the contribution of each component to the total variation

studyVar	
A matrix with the contribution to the study variation

ncat	
Number of distinct categories

Note
The F test for the main effects in the ANOVA table is usually made taken the operator/appraisal interaction as the error term (repeated measures model), thereby computing F as $MS_factor/MS_interaction$, e.g. in appendix A of AIAG MSA manual, in Montgomery (2009) and by statistical software such as Minitab. However, in the example provided in page 127 of the AIAG MSA Manual, the F test is performed as $MS_factor/MS_equipment$, i.e., repeatability. Thus, since version 0.9-3 of the SixSigma package, a new argument errorTerm controls which term should be used as error Term, one of "interaction", "repeatability".

Argument alphaLim is used as upper limit to use the full model, i.e., with interaction. Above this value for the interaction effect, the ANOVA table without the interaction effect is also obtained, and the variance components are computed pooling the interaction term with the repeatibility.

Tolerance can be calculaten from usl and lsl values or specified by hand.

The type of analysis to perform can be specified with the parameter method, "crossed" or "nested". Be sure to select the correct one and to have the data prepare for such type of analysis. If you don't know wich one is for you check it before. It is really important to perform the correct one. Otherwise results have no sense.

Response from GPT

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

Fix bug

Run the codes and there's an error:

复制代码
错误于if (!(var %in% names(data))) {: the condition has length > 1

Paste the error message to GPT-4o-Mini and then get the response:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = height_data$Response,     # Measured variable (ensure this is a single column)
  part = height_data$Part,         # Factor for parts
  appr = height_data$Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)

GPT do not provide the correct codes at this time. I will try to fix the error by myself. By comparing the codes between MSA.R provided by TA and the response from GPT, I delete height_data$ in the var, part and appr argument, then the error is fixed. The correct codes are as follows:

r 复制代码
# Load necessary libraries
library(SixSigma)
library(dplyr)

# Read the dataset
height_data <- read.csv("height_recording.csv")

# Ensure the column names are correct
str(height_data)  # Check the structure of the data

# Perform Gage R&R analysis
gage_rr_result <- ss.rr(
  var = Response,     # Measured variable (ensure this is a single column)
  part = Part,         # Factor for parts
  appr = Operator,     # Factor for appraisers (operators)
  lsl = NA,                        # Lower specification limit (if applicable)
  usl = NA,                        # Upper specification limit (if applicable)
  sigma = 6,                      # Number of standard deviations
  tolerance = NA,                  # Tolerance can be calculated from usl and lsl
  data = height_data,              # Data frame containing the variables
  main = "Six Sigma Gage R&R Study", # Main title for the graphic output
  sub = "Height Measurement Study",  # Subtitle
  alphaLim = 0.05,                 # Significance level
  errorTerm = "interaction",        # Error term
  digits = 4,                      # Number of decimal digits for output
  method = "crossed",              # Type of analysis
  print_plot = TRUE,               # Print plots
  signifstars = FALSE               # Significance stars
)

# View the results
print(gage_rr_result)
相关推荐
医工交叉实验工坊7 小时前
R 语言 ComplexUpset 包实战:替代 Venn 图的高级集合可视化方案
算法·r语言
青春不败 177-3266-05208 小时前
R语言贝叶斯方法在生态环境领域中的高阶技术应用
r语言·贝叶斯·生态学·科研绘图·结构方程·环境科学·混合效应
love530love1 天前
怎么更新 cargo.exe ?(Rust 工具链)
人工智能·windows·python·rust·r语言
烟锁池塘柳05 天前
【R语言】R语言中 rbind() 与 merge() 的区别详解
sql·r语言
夏婵语冰6 天前
实用R语言机器学习指南:从数据预处理到模型实战(附配套学习资源)
开发语言·学习·r语言
Yolo566Q6 天前
“R语言+遥感”的水环境综合评价方法实践技术应用
开发语言·r语言
天意生信云6 天前
生信分析自学攻略 | R语言数据筛选和修改
数据结构·经验分享·r语言
烟锁池塘柳09 天前
【R语言】R 语言中 gsub 与正则表达式详解(含 POSIX 与 Perl 风格实例)
正则表达式·r语言·perl
梦想的初衷~10 天前
“R+遥感”的水环境综合评价方法实践技术应用
r语言·水环境·水文
天意生信云10 天前
生信分析自学攻略 | R软件和Rstudio的安装
经验分享·r语言