vector的介绍
vector
是表示可变大小数组的序列容器。- 就像数组一样,
vector
也采用连续存储空间来存储元素。也就意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。 - 本质上,
vector
使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小,为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector
并不会每次都重新分配大小。 vector
分配空间策略:vector
会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。- 因此,
vector
占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。 - 与其它动态序列容器相比(
deque
,list
andforward_list
),vector
在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list
和forward_list
统一的迭代器和引用更好。
vector构造
函数声明 | 功能 |
---|---|
vector() | 无参构造 |
vector(size_type n, const value_type& val = value_type()) | 构造并初始化n个val |
vector (InputIterator first, InputIterator last); | 使用迭代器进行初始化构造 |
vector (const vector& x); | 拷贝构造 |
vector代码构造演示
cpp
// vector的构造
int TestVector1()
{
// constructors used in the same order as described above:
vector<int> first; // empty vector of ints
vector<int> second(4, 100); // four ints with value 100
vector<int> third(second.begin(), second.end()); // iterating through second
vector<int> fourth(third); // a copy of third
// 下面涉及迭代器初始化的部分,我们学习完迭代器再来看这部分
// the iterator constructor can also be used to construct from arrays:
int myints[] = { 16,2,77,29 };
vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));
cout << "The contents of fifth are:";
for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
cout << ' ' << *it;
cout << '\n';
return 0;
}
vector iterator
iterator使用 | 接口说明 |
---|---|
begin | 获取第一个数据位置的iterator/const_iterator |
end | 获取最后一个数据的下一个位置的iterator/const_iterator |
rbegin | 获取最后一个数据位置的reverse_iterator |
rend | 获取第一个数据前一个位置的reverse_iterator |
vector迭代器使用演示
cpp
// vector的迭代器
void PrintVector(const vector<int>& v)
{
// const对象使用const迭代器进行遍历打印
vector<int>::const_iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
void TestVector2()
{
// 使用push_back插入4个数据
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
// 使用迭代器进行遍历打印
vector<int>::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
// 使用迭代器进行修改
it = v.begin();
while (it != v.end())
{
*it *= 2;
++it;
}
// 使用反向迭代器进行遍历再打印
// vector<int>::reverse_iterator rit = v.rbegin();
auto rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
++rit;
}
cout << endl;
PrintVector(v);
}
vector 空间
函数名称 | 接口说明 |
---|---|
size | 获取数据个数 |
capacity | 获取容量大小 |
empty | 判断是否为空 |
resize | 改变vector的size |
reserve | 改变vector的capacity |
注:
capacity
的代码在vs
和g++
下分别运行会发现,vs
下capacity
是按1.5倍增长的,g++
是按2倍增长的。
这个问题经常会考察,不要固化的认为,vector
增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。reserve
只负责开辟空间,如果确定知道需要用多少空间,reserve
可以缓解vector
增容的代价缺陷问题。resize
在开空间的同时还会进行初始化,影响size
。
vector容量接口使用示例
cpp
// 测试vector的默认扩容机制
void TestVectorExpand()
{
size_t sz;
vector<int> v;
sz = v.capacity();
cout << "making v grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
cpp
vs:运行结果:vs下使用的STL基本是按照1.5倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 3
capacity changed: 4
capacity changed: 6
capacity changed: 9
capacity changed: 13
capacity changed: 19
capacity changed: 28
capacity changed: 42
capacity changed: 63
capacity changed: 94
capacity changed: 141
cpp
g++运行结果:linux下使用的STL基本是按照2倍方式扩容
making foo grow:
capacity changed: 1
capacity changed: 2
capacity changed: 4
capacity changed: 8
capacity changed: 16
capacity changed: 32
capacity changed: 64
capacity changed: 128
cpp
// resize(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{
vector<int> v;
// set some initial content:
for (int i = 1; i < 10; i++)
v.push_back(i);
v.resize(5);
v.resize(8, 100);
v.resize(12);
cout << "v contains:";
for (size_t i = 0; i < v.size(); i++)
cout << ' ' << v[i];
cout << '\n';
}
cpp
// 往vector中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
vector<int> v;
size_t sz = v.capacity();
v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容
cout << "making bar grow:\n";
for (int i = 0; i < 100; ++i)
{
v.push_back(i);
if (sz != v.capacity())
{
sz = v.capacity();
cout << "capacity changed: " << sz << '\n';
}
}
}
vector 增删查改
函数名称 | 接口说明 |
---|---|
push_back | 尾插 |
pop_back | 尾删 |
find | 查找(注意这个是算法模块实现,不是vector的成员接口) |
insert | 在指定位置前插入val |
erase | 删除该位置的val |
swap | 交换两个vector的数据空间 |
operator[ ] | 像数组一样访问 |
vector 增删查改接口使用演示
cpp
// vector的增删改查
// 尾插和尾删:push_back/pop_back
void TestVector4()
{
vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
auto it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
v.pop_back();
v.pop_back();
it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
}
cpp
// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
// 使用列表方式初始化,C++11新语法
vector<int> v{ 1, 2, 3, 4 };
// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
// 1. 先使用find查找3所在位置
// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
auto pos = find(v.begin(), v.end(), 3);
if (pos != v.end())
{
// 2. 在pos位置之前插入30
v.insert(pos, 30);
}
vector<int>::iterator it = v.begin();
while (it != v.end())
{
cout << *it << " ";
++it;
}
cout << endl;
pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据
v.erase(pos);
it = v.begin();
while (it != v.end()) {
cout << *it << " ";
++it;
}
cout << endl;
}
cpp
// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
void TestVector6()
{
vector<int> v{ 1, 2, 3, 4 };
// 通过[]读写第0个位置。
v[0] = 10;
cout << v[0] << endl;
// 1. 使用for+[]小标方式遍历
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
vector<int> swapv;
swapv.swap(v);
cout << "v data:";
for (size_t i = 0; i < v.size(); ++i)
cout << v[i] << " ";
cout << endl;
// 2. 使用迭代器遍历
cout << "swapv data:";
auto it = swapv.begin();
while (it != swapv.end())
{
cout << *it << " ";
++it;
}
// 3. 使用范围for遍历
for (auto x : v)
cout << x << " ";
cout << endl;
}
vector 迭代器失效问题
迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector
的迭代器就是原生态指针T*
。
因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,
程序可能会崩溃)。
对于vector可能会导致其迭代器失效的操作有:
一、 会引起其底层空间改变的操作,都有可能是迭代器失效,
比如:resize
、reserve
、insert
、assign
、push_back
等。
将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
cpp
v.resize(100, 8);
reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
cpp
v.reserve(100);
插入元素期间,可能会引起扩容,而导致原空间被释放
cpp
v.insert(v.begin(), 0);
v.push_back(8);
给vector重新赋值,可能会引起底层容量改变
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。
二、 指定位置元素的删除操作--erase
erase
删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,
但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。
cpp
#include <iostream>
using namespace std;
#include <vector>
int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}
以下代码的功能是删除vector中所有的偶数,请问那个代码是正确的,为什么?
cpp
#include <iostream>
using namespace std;
#include <vector>
int main()
{
vector<int> v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
v.erase(it);
++it;
}
return 0;
}
int main()
{
vector<int> v{ 1, 2, 3, 4 };
auto it = v.begin();
while (it != v.end())
{
if (*it % 2 == 0)
it = v.erase(it);
else
++it;
}
return 0;
}
注:
与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
迭代器失效解决办法 :在使用前,对迭代器重新赋值即可。