【Python时序数据系列】基于LSTM模型实现时序数据二分类(案例+源码)

这是我的第366篇原创文章。

一、引言

前面我介绍了单变量时序预测和多变量时序预测,都是回归任务。

相关链接:

时序预测系列文章

本文将介绍时序分类任务-基于LSTM模型进行时序数据二分类。

二、实现过程

2.1 准备数据

python 复制代码
df1 = pd.read_table("train-small.txt",sep=',',header=0)
df1 = df1.iloc[:10000,:]
# 将Time (UTC)列设置为索引
df1.set_index('Time (UTC)', inplace=True)

df1:

2.2 归一化

python 复制代码
min_max_scaler = preprocessing.MinMaxScaler()
df0 = min_max_scaler.fit_transform(df1)
df1 = pd.DataFrame(df0, columns=df1.columns)

2.3 构造标签列

计算close的变化,构造label:

python 复制代码
record=(df1['Close'][1:].values-df1['Close'][0:-1].values)>0
classification=[0]
for i in record:
    if(i==True):
        classification.append(1)
    else:
        classification.append(0)

df1['label']=classification
df1.insert(0, 'label', df1.pop('label'))
fea_num = len(df1.columns)
print(df1)

df1:

2.4 数据划分

8比2划分数据集:

python 复制代码
df = df1
test_split = round(len(df)*0.20)
print(test_split)
df_for_training=df[:-test_split]
df_for_testing=df[-test_split:]
df_for_training=df_for_training.values
df_for_testing=df_for_testing.values

2.5 数据转换

设置滑动窗口为2:

python 复制代码
window_size = 2
trainX,trainY=createXY(df_for_training,window_size)
testX,testY=createXY(df_for_testing,window_size)

# 将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数)
trainX = np.reshape(trainX, (trainX.shape[0], window_size, fea_num))
testX = np.reshape(testX, (testX.shape[0], window_size, fea_num))

print("trainX Shape-- ",trainX.shape)
print("trainY Shape-- ",trainY.shape)
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)

数据形状:

2.6 模型训练

建立LSTM模型,进行训练:

python 复制代码
model = Sequential()
model.add(LSTM(64, input_shape=(window_size, fea_num), return_sequences=False))
model.add(Dropout(0.01))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
history = model.fit(trainX, trainY, epochs = 20, batch_size = 200,validation_data=(testX, testY))

迭代loss曲线:

迭代accuracy曲线:

2.7 模型评估

python 复制代码
y_test_predict=model.predict(testX)
y_test_predict=y_test_predict[:,0]
print(y_test_predict)
print(y_test_predict>0.5)
y_test_predict=[int(i) for i in y_test_predict>0.5]
y_test_predict=np.array(y_test_predict)

print("精确度等指标:")
print(metrics.classification_report(testY,y_test_predict))

classification_report:

混淆矩阵:

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。需要数据集和源码的小伙伴可以关注底部公众号添加作者微信。

相关推荐
吴佳浩12 小时前
Python入门指南(五) - 为什么选择 FastAPI?
后端·python·fastapi
寰天柚子13 小时前
Java并发编程中的线程安全问题与解决方案全解析
java·开发语言·python
2503_9284115613 小时前
项目中的一些问题(补充)
人工智能·python·tensorflow
superman超哥14 小时前
仓颉语言中锁的实现机制深度剖析与并发实践
c语言·开发语言·c++·python·仓颉
vv_Ⅸ14 小时前
打卡day42
python
Lvan的前端笔记14 小时前
python:深入理解 Python 的 `__name__ == “__main__“` 与双下划线(dunder)机制
开发语言·python
爱笑的眼睛1115 小时前
深入解析Matplotlib Axes API:构建复杂可视化架构的核心
java·人工智能·python·ai
爱埋珊瑚海~~15 小时前
基于MediaCrawler爬取热点视频
大数据·python
工程师丶佛爷15 小时前
从零到一MCP集成:让模型实现从“想法”到“实践”的跃迁
大数据·人工智能·python
2501_9216494915 小时前
免费获取股票历史行情与分时K线数据 API
开发语言·后端·python·金融·数据分析