Flink简介及小案例

Apache Flink 是一个用于分布式数据流处理的框架,常用于实时大数据处理和批处理。Flink 的操作可以分为两个方面:安装配置编写任务代码。下面对这两块做一下简单的介绍。

从 Apache Flink 的官网上下载对应的二进制包 Flink 下载页面

bash 复制代码
# 使用wget下载
wget https://downloads.apache.org/flink/flink-1.14.4/flink-1.14.4-bin-scala_2.12.tgz

# 解压
tar -xzf flink-1.14.4-bin-scala_2.12.tgz
cd flink-1.14.4
  • 配置文件路径:conf/flink-conf.yaml
  • 可修改的参数:
    • jobmanager.rpc.address: 设置为 JobManager 的主机名或 IP 地址。
    • taskmanager.numberOfTaskSlots: 每个 TaskManager 可以配置的 slot 数量。

Flink 可以本地运行,也可以运行在分布式集群上。下面展示在本地启动 Flink 的命令:

bash 复制代码
# 启动 Flink 集群
./bin/start-cluster.sh

启动后可以通过浏览器访问 localhost:8081 来查看 Flink Web UI,查看作业状态和集群信息。

Flink 任务主要分为两类:DataStream API (用于流处理)和 DataSet API(用于批处理)。这里我们主要介绍流处理。

(1) 设置开发环境

通常我们使用 Java 或 Scala 编写 Flink 应用。在 Maven 项目中,可以通过添加以下依赖来集成 Flink:

xml 复制代码
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.12</artifactId>
    <version>1.14.4</version>
</dependency>
(2) 示例代码

一个简单的流处理任务的 Java 代码如下:

java 复制代码
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkExample {
    public static void main(String[] args) throws Exception {
        // 创建执行环境
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 生成数据源
        DataStream<String> text = env.fromElements("hello", "world", "flink", "streaming");

        // 进行简单的转换操作,如 map
        DataStream<String> upperCaseStream = text.map(String::toUpperCase);

        // 打印结果到控制台
        upperCaseStream.print();

        // 启动程序
        env.execute("Flink Streaming Example");
    }
}
(3) 提交任务

当任务编写完成后,可以通过以下命令将任务提交到 Flink 集群:

bash 复制代码
# 提交任务到 Flink 集群
./bin/flink run -c <MainClass> <JAR文件路径>

例如:

bash 复制代码
./bin/flink run -c com.example.FlinkExample /path/to/flink-example.jar

3. 常用操作

Flink 提供了很多常用操作用于流数据处理:

  • map(): 对流中的每个元素应用一个函数。
  • filter(): 过滤掉不符合条件的元素。
  • keyBy(): 基于某个字段对流进行分组。
  • window(): 对流数据进行窗口化处理(如基于时间窗口或数量窗口)。
  • reduce(): 聚合操作,对窗口中的数据进行累积处理。

这些操作组合起来可以实现复杂的实时数据处理逻辑。

总结

Flink 的操作主要包括集群的搭建与配置,以及通过 API 编写数据处理任务。安装和启动相对简单,而任务的实现可以根据需求组合不同的算子来实现复杂的处理逻辑。如果你有具体的任务需求或想了解某些细节,我可以为你提供更详细的帮助。

相关推荐
点赋科技15 分钟前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ36 分钟前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克41 分钟前
Flink CDC —部署模式
大数据·flink
Guheyunyi1 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
酷爱码2 小时前
Spring Boot 整合 Apache Flink 的详细过程
spring boot·flink·apache
问道飞鱼2 小时前
Flink 高可用集群部署指南
flink·部署·批处理·流式批处理
Channing Lewis2 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣2 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IvanCodes3 小时前
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
大数据·数据库·hadoop·sqoop