目标检测图像letterbox、坐标变换处理脚本

import os

import shutil

from tqdm import tqdm

import cv2

def my_letter_box(img,size=(320,320)): #

h,w,c = img.shape

r = min(size[0]/h,size[1]/w)

new_h,new_w = int(h*r),int(w*r)

top = int((size[0]-new_h)/2)

left = int((size[1]-new_w)/2)

bottom = size[0]-new_h-top

right = size[1]-new_w-left

img_resize = cv2.resize(img,(new_w,new_h))

img = cv2.copyMakeBorder(img_resize,top,bottom,left,right,borderType=cv2.BORDER_CONSTANT,value=(114,114,114))

return img,r,left,top

SRC_DIR = r"/data/detect/2/"

DST_DIR_IMG = r"/data/detect/images320/"

DST_DIR_LABELS = r"/data/detect/labels320/"

imglist = os.listdir(SRC_DIR)

for file in tqdm(imglist):

if not file.endswith(".jpg"):

continue

name = file.split(".jpg")[0]

if not os.path.exists(SRC_DIR+name+".txt"):

continue

#shutil.copy(SRC_DIR+file,DST_DIR_IMG+file)

img =cv2.imread(SRC_DIR+file)

h_img,w_img,c= img.shape

img_letter,rr,left,top= my_letter_box(img)

cv2.imwrite(DST_DIR_IMG+file,img_letter)

with open(os.path.join(SRC_DIR, name+".txt"), 'r', encoding="utf-8") as r:

label_list = r.readlines()

with open(os.path.join(DST_DIR_LABELS, name+".txt"), 'a+') as ftxt:

for label in label_list:

label1 = [x for x in label.split(" ") if x != ""]

class_name =label1[0]

x = float(label1[1])

y = float(label1[2])

w = float(label1[3])

h = float(label1[4])

ww = w_img*w

hh = h_img*h

xx1 = (x-w/2)*w_img

yy1 = (y-h/2)*h_img

xx2 = ww+xx1

yy2 = hh+yy1

x_letter_1 = (xx1)*rr+left

y_letter_1 = (yy1)*rr+top

x_letter_2 = (xx2)*rr+left

y_letter_2 = (yy2)*rr+top

#print("x=",x)

#print("h=",h)

#ftxt.writelines(class_name + " " + str(xx1) + " " + str(yy1)+" " + str(xx2) + " "+str(yy2) + '\n')

ftxt.writelines(class_name + " " + str(x_letter_1) + " " + str(y_letter_1)+" " + str(x_letter_2) + " "+str(y_letter_2) + '\n')

ftxt.close()

相关推荐
threelab35 分钟前
07.three官方示例+编辑器+AI快速学习webgl_buffergeometry_attributes_integer
人工智能·学习·编辑器
背太阳的牧羊人1 小时前
tokenizer.encode_plus,BERT类模型 和 Sentence-BERT 他们之间的区别与联系
人工智能·深度学习·bert
学算法的程霖1 小时前
TGRS | FSVLM: 用于遥感农田分割的视觉语言模型
人工智能·深度学习·目标检测·机器学习·计算机视觉·自然语言处理·遥感图像分类
博睿谷IT99_1 小时前
华为HCIP-AI认证考试版本更新通知
人工智能·华为
一点.点3 小时前
SafeDrive:大语言模型实现自动驾驶汽车知识驱动和数据驱动的风险-敏感决策——论文阅读
人工智能·语言模型·自动驾驶
concisedistinct3 小时前
如何评价大语言模型架构 TTT ?模型应不应该永远“固定”在推理阶段?模型是否应当在使用时继续学习?
人工智能·语言模型·大模型
找了一圈尾巴3 小时前
AI Agent-基础认知与架构解析
人工智能·ai agent
jzwei0233 小时前
Transformer Decoder-Only 参数量计算
人工智能·深度学习·transformer
小言Ai工具箱3 小时前
PuLID:高效的图像变脸,可以通过文本提示编辑图像,通过指令修改人物属性,个性化文本到图像生成模型,支持AI变脸!艺术创作、虚拟形象定制以及影视制作
图像处理·人工智能·计算机视觉
白熊1883 小时前
【计算机视觉】基于深度学习的实时情绪检测系统:emotion-detection项目深度解析
人工智能·深度学习·计算机视觉