【多类别分类中的准确率召回率平均策略】

文章目录

  • [1. 机器学习中的微平均策略(Micro Average Strategy)](#1. 机器学习中的微平均策略(Micro Average Strategy))
  • [2. 机器学习中的宏平均策略(Macro Average Strategy)](#2. 机器学习中的宏平均策略(Macro Average Strategy))
  • [3、weighted 平均策略](#3、weighted 平均策略)

1. 机器学习中的微平均策略(Micro Average Strategy)

在机器学习和数据科学中,微平均(Micro Average)是一种评估分类模型性能的方法。与宏平均(Macro Average)不同,微平均在计算指标(如精确率、召回率、F1 分数)时,先将所有类别的预测和实际值汇总,然后计算整体指标。这种方法对类别不平衡的数据集尤其有用。具体特点包括:

全局计算:将所有类别的真阳性、假阳性和假阴性累加后,再计算指标。

适用于类别不平衡:由于微平均考虑了每个实例,对样本数量不平衡的数据集更具代表性。

与宏平均的区别:宏平均先对每个类别分别计算指标,再取平均,而微平均直接基于整体数据计算。

示例: 假设有三个类别,类别 A 有 100 个样本,类别 B 有 10 个样本,类别 C 有 1 个样本。使用微平均时,所有样本被平等对待,不论所属类别。

2. 机器学习中的宏平均策略(Macro Average Strategy)

在机器学习和数据科学中,宏平均(Macro Average)通常指的是在评估分类模型性能时,对每个类别的指标(如精确率、召回率、F1分数)先分别计算,然后取平均值,而不考虑各类别的样本数量。这种方法适用于类别不平衡的数据集。

如果"宏平均策略"是在这个领域提到的,可能指的是在模型评估或优化过程中,采用宏平均的方法来确保各类别的性能均衡。

3、weighted 平均策略

根据每个类别的比例权重平均

相关推荐
月光有害5 分钟前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆10 分钟前
智能体 - AI 幻觉
人工智能
音视频牛哥10 分钟前
RTSP协议规范深度解析与SmartMediaKit的RTSP播放器工程实践
人工智能·计算机视觉·音视频·大牛直播sdk·rtsp播放器·超低延迟rtsp播放器·rtspplayer
zhangfeng11331 小时前
Warmup Scheduler深度学习训练中,在训练初期使用较低学习率进行预热(Warmup),然后再按照预定策略(如余弦退火、阶梯下降等)衰减学习率的方法
人工智能·深度学习·学习
Faker66363aaa1 小时前
城市地标建筑与车辆检测 - 基于YOLOv10n的高效目标检测模型训练与应用
人工智能·yolo·目标检测
沃达德软件1 小时前
电信诈骗预警平台功能解析
大数据·数据仓库·人工智能·深度学习·机器学习·数据库开发
Hy行者勇哥1 小时前
Seedance 全面解析:定义、使用指南、同类软件与完整攻略
人工智能·学习方法·视频
琅琊榜首20202 小时前
AI赋能内容转化:小说转短剧实操全流程(零编程基础适配)
大数据·人工智能
青铜弟弟2 小时前
基于物理的深度学习模型
人工智能·深度学习
是店小二呀2 小时前
atvoss:异构计算视觉处理与AI模型加速套件深度解析
人工智能