【多类别分类中的准确率召回率平均策略】

文章目录

  • [1. 机器学习中的微平均策略(Micro Average Strategy)](#1. 机器学习中的微平均策略(Micro Average Strategy))
  • [2. 机器学习中的宏平均策略(Macro Average Strategy)](#2. 机器学习中的宏平均策略(Macro Average Strategy))
  • [3、weighted 平均策略](#3、weighted 平均策略)

1. 机器学习中的微平均策略(Micro Average Strategy)

在机器学习和数据科学中,微平均(Micro Average)是一种评估分类模型性能的方法。与宏平均(Macro Average)不同,微平均在计算指标(如精确率、召回率、F1 分数)时,先将所有类别的预测和实际值汇总,然后计算整体指标。这种方法对类别不平衡的数据集尤其有用。具体特点包括:

全局计算:将所有类别的真阳性、假阳性和假阴性累加后,再计算指标。

适用于类别不平衡:由于微平均考虑了每个实例,对样本数量不平衡的数据集更具代表性。

与宏平均的区别:宏平均先对每个类别分别计算指标,再取平均,而微平均直接基于整体数据计算。

示例: 假设有三个类别,类别 A 有 100 个样本,类别 B 有 10 个样本,类别 C 有 1 个样本。使用微平均时,所有样本被平等对待,不论所属类别。

2. 机器学习中的宏平均策略(Macro Average Strategy)

在机器学习和数据科学中,宏平均(Macro Average)通常指的是在评估分类模型性能时,对每个类别的指标(如精确率、召回率、F1分数)先分别计算,然后取平均值,而不考虑各类别的样本数量。这种方法适用于类别不平衡的数据集。

如果"宏平均策略"是在这个领域提到的,可能指的是在模型评估或优化过程中,采用宏平均的方法来确保各类别的性能均衡。

3、weighted 平均策略

根据每个类别的比例权重平均

相关推荐
qq_1249870753几秒前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计
Coder_Boy_3 分钟前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
L、2185 分钟前
CANN 中的图优化技术详解:如何让 AI 模型跑得更快、更省
人工智能
大模型玩家七七6 分钟前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
新缸中之脑8 分钟前
像画家一样编程
人工智能
tq10869 分钟前
心主神明:传统智慧如何启示AI的可靠之道
人工智能
珠海西格电力科技13 分钟前
微电网能量平衡理论的实现条件在不同场景下有哪些差异?
运维·服务器·网络·人工智能·云计算·智慧城市
新缸中之脑14 分钟前
“AI 裁员“神话
人工智能
零售ERP菜鸟39 分钟前
范式革命:从“信息化”到“数字化”的本质跃迁
大数据·人工智能·职场和发展·创业创新·学习方法·业界资讯
光羽隹衡41 分钟前
计算机视觉——Opencv(图像拼接)
人工智能·opencv·计算机视觉