【多类别分类中的准确率召回率平均策略】

文章目录

  • [1. 机器学习中的微平均策略(Micro Average Strategy)](#1. 机器学习中的微平均策略(Micro Average Strategy))
  • [2. 机器学习中的宏平均策略(Macro Average Strategy)](#2. 机器学习中的宏平均策略(Macro Average Strategy))
  • [3、weighted 平均策略](#3、weighted 平均策略)

1. 机器学习中的微平均策略(Micro Average Strategy)

在机器学习和数据科学中,微平均(Micro Average)是一种评估分类模型性能的方法。与宏平均(Macro Average)不同,微平均在计算指标(如精确率、召回率、F1 分数)时,先将所有类别的预测和实际值汇总,然后计算整体指标。这种方法对类别不平衡的数据集尤其有用。具体特点包括:

全局计算:将所有类别的真阳性、假阳性和假阴性累加后,再计算指标。

适用于类别不平衡:由于微平均考虑了每个实例,对样本数量不平衡的数据集更具代表性。

与宏平均的区别:宏平均先对每个类别分别计算指标,再取平均,而微平均直接基于整体数据计算。

示例: 假设有三个类别,类别 A 有 100 个样本,类别 B 有 10 个样本,类别 C 有 1 个样本。使用微平均时,所有样本被平等对待,不论所属类别。

2. 机器学习中的宏平均策略(Macro Average Strategy)

在机器学习和数据科学中,宏平均(Macro Average)通常指的是在评估分类模型性能时,对每个类别的指标(如精确率、召回率、F1分数)先分别计算,然后取平均值,而不考虑各类别的样本数量。这种方法适用于类别不平衡的数据集。

如果"宏平均策略"是在这个领域提到的,可能指的是在模型评估或优化过程中,采用宏平均的方法来确保各类别的性能均衡。

3、weighted 平均策略

根据每个类别的比例权重平均

相关推荐
攻城狮7号5 分钟前
Kimi 发布并开源 K2.5 模型:开始在逻辑和干活上卷你了
人工智能·ai编程·视觉理解·kimi code·kimi k2.5·agent 集群
szxinmai主板定制专家8 分钟前
基于 PC 的控制技术+ethercat+linux实时系统,助力追踪标签规模化生产,支持国产化
arm开发·人工智能·嵌入式硬件·yolo·fpga开发
阿狸OKay22 分钟前
einops 库和 PyTorch 的 einsum 的语法
人工智能·pytorch·python
低调小一27 分钟前
Google AI Agent 白皮书拆解(1):从《Introduction to Agents》看清 Agent 的工程底座
人工智能
feasibility.29 分钟前
混元3D-dit-v2-mv-turbo生成3D模型初体验(ComfyUI)
人工智能·3d·aigc·三维建模·comfyui
极智-9961 小时前
GitHub 热榜项目-日榜精选(2026-02-02)| AI智能体、终端工具、视频生成等 | openclaw、99、Maestro等
人工智能·github·视频生成·终端工具·ai智能体·电子书管理·rust工具
悟纤1 小时前
AI 音乐创作中的音乐织体(Texture)完整指南 | Suno高级篇 | 第30篇
人工智能·suno·suno ai·suno api·ai music
可触的未来,发芽的智生1 小时前
狂想:为AGI代称造字ta,《第三类智慧存在,神的赐名》
javascript·人工智能·python·神经网络·程序人生
莱茶荼菜1 小时前
yolo26 阅读笔记
人工智能·笔记·深度学习·ai·yolo26
Dingdangcat861 小时前
【YOLOv8改进实战】使用Ghost模块优化P2结构提升涂胶缺陷检测精度_1
人工智能·yolo·目标跟踪