【多类别分类中的准确率召回率平均策略】

文章目录

  • [1. 机器学习中的微平均策略(Micro Average Strategy)](#1. 机器学习中的微平均策略(Micro Average Strategy))
  • [2. 机器学习中的宏平均策略(Macro Average Strategy)](#2. 机器学习中的宏平均策略(Macro Average Strategy))
  • [3、weighted 平均策略](#3、weighted 平均策略)

1. 机器学习中的微平均策略(Micro Average Strategy)

在机器学习和数据科学中,微平均(Micro Average)是一种评估分类模型性能的方法。与宏平均(Macro Average)不同,微平均在计算指标(如精确率、召回率、F1 分数)时,先将所有类别的预测和实际值汇总,然后计算整体指标。这种方法对类别不平衡的数据集尤其有用。具体特点包括:

全局计算:将所有类别的真阳性、假阳性和假阴性累加后,再计算指标。

适用于类别不平衡:由于微平均考虑了每个实例,对样本数量不平衡的数据集更具代表性。

与宏平均的区别:宏平均先对每个类别分别计算指标,再取平均,而微平均直接基于整体数据计算。

示例: 假设有三个类别,类别 A 有 100 个样本,类别 B 有 10 个样本,类别 C 有 1 个样本。使用微平均时,所有样本被平等对待,不论所属类别。

2. 机器学习中的宏平均策略(Macro Average Strategy)

在机器学习和数据科学中,宏平均(Macro Average)通常指的是在评估分类模型性能时,对每个类别的指标(如精确率、召回率、F1分数)先分别计算,然后取平均值,而不考虑各类别的样本数量。这种方法适用于类别不平衡的数据集。

如果"宏平均策略"是在这个领域提到的,可能指的是在模型评估或优化过程中,采用宏平均的方法来确保各类别的性能均衡。

3、weighted 平均策略

根据每个类别的比例权重平均

相关推荐
小天才才24 分钟前
算法岗面试经验分享-大模型篇
人工智能·语言模型·自然语言处理
IOT.FIVE.NO.11 小时前
Conda安装pytorch和cuda出现问题的解决记录
人工智能·pytorch·python
苏苏susuus4 小时前
机器学习:load_predict_project
人工智能·机器学习
科技小E4 小时前
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
人工智能·安全·智能手机
猿饵块5 小时前
视觉slam--框架
人工智能
yvestine6 小时前
自然语言处理——Transformer
人工智能·深度学习·自然语言处理·transformer
SuperW6 小时前
OPENCV图形计算面积、弧长API讲解(1)
人工智能·opencv·计算机视觉
山海不说话7 小时前
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
人工智能·python·计算机视觉·视觉检测
虹科数字化与AR8 小时前
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
人工智能·ar·ar眼镜·船舶智造·数字工作流·智能装配
飞哥数智坊9 小时前
Coze实战第13讲:飞书多维表格读取+豆包生图模型,轻松批量生成短剧封面
人工智能