PyTorch求导相关

PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果;而TensorFlow是静态图。

在pytorch的计算图里只有两种元素:数据(tensor)和 运算(operation)

运算包括了:加减乘除、开方、幂指对、三角函数等可求导运算

数据可分为:叶子节点 (leaf node)和非叶子节点 ;叶子节点是用户创建的节点,不依赖其它节点;它们表现出来的区别在于反向传播结束之后,非叶子节点的梯度会被释放掉,只保留叶子节点的梯度,这样就节省了内存。如果想要保留非叶子节点的梯度,可以使用retain_grad()方法。

torch.tensor 具有如下属性:

  • 查看 是否可以求导 requires_grad
  • 查看 运算名称 grad_fn
  • 查看 是否为叶子节点 is_leaf
  • 查看 导数值 grad

针对requires_grad属性,自己定义的叶子节点默认为False,而非叶子节点默认为True,神经网络中的权重默认为True。判断哪些节点是True/False的一个原则就是从你需要求导的叶子节点到loss节点之间是一条可求导的通路。

当我们想要对某个Tensor变量求梯度时,需要先指定requires_grad属性为True,指定方式主要有两种:

复制代码
x = torch.tensor(1.).requires_grad_() # 第一种

x = torch.tensor(1., requires_grad=True) # 第二种

PyTorch提供两种求梯度的方法:backward() and torch.autograd.grad() ,他们的区别在于前者是给叶子节点填充.grad字段,而后者是直接返回梯度给你,我会在后面举例说明。还需要知道y.backward()其实等同于torch.autograd.backward(y)

一个简单的求导例子是:y=(x+1)∗(x+2) ,计算 ∂y/∂x ,假设给定 x=2
先画出计算图

手算:∂y/∂x=(x+2)*1+(x+1)*1->7

使用backward()

复制代码
x = torch.tensor(2., requires_grad=True)

a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)

y.backward()
print(x.grad)
>>>tensor(7.)

看一下这几个tensor的属性

复制代码
print("requires_grad: ", x.requires_grad, a.requires_grad, b.requires_grad, y.requires_grad)
print("is_leaf: ", x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
print("grad: ", x.grad, a.grad, b.grad, y.grad)

>>>requires_grad:  True True True True
>>>is_leaf:  True False False False
>>>grad:  tensor(7.) None None None

使用backward()函数反向传播计算tensor的梯度时,并不计算所有tensor的梯度,而是只计算满足这几个条件的tensor的梯度:1.类型为叶子节点、2.requires_grad=True、3.依赖该tensor的所有tensor的requires_grad=True。所有满足条件的变量梯度会自动保存到对应的grad属性里。

使用autograd.grad()

复制代码
x = torch.tensor(2., requires_grad=True)

a = torch.add(x, 1)
b = torch.add(x, 2)
y = torch.mul(a, b)

grad = torch.autograd.grad(outputs=y, inputs=x)
print(grad[0])
>>>tensor(7.)

因为指定了输出y,输入x,所以返回值就是 ∂x/∂y 这一梯度,完整的返回值其实是一个元组,保留第一个元素就行,后面元素是

二阶求导

求一阶导可以用backward()

复制代码
x = torch.tensor(2., requires_grad=True)
y = torch.tensor(3., requires_grad=True)

z = x * x * y

z.backward()
print(x.grad, y.grad)
>>>tensor(12.) tensor(4.)

也可以用autograd.grad()

复制代码
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x)
print(grad_x[0])
>>>tensor(12.)

为什么不在这里面同时也求对y的导数呢?因为无论是backward还是autograd.grad在计算一次梯度后图就被释放了,如果想要保留,需要添加retain_graph=True

复制代码
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_y = torch.autograd.grad(outputs=z, inputs=y)

print(grad_x[0], grad_y[0])
>>>tensor(12.) tensor(4.) 

再来看如何求高阶导,理论上其实是上面的grad_x再对x求梯度,试一下看

复制代码
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x, retain_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)

print(grad_xx[0])
>>>RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

报错了,虽然retain_graph=True保留了计算图和中间变量梯度, 但没有保存grad_x的运算方式,需要使用creat_graph=True在保留原图的基础上再建立额外的求导计算图,也就是会把 ∂z/∂x=2xy 这样的运算存下来

复制代码
# autograd.grad() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad_x = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad_xx = torch.autograd.grad(outputs=grad_x, inputs=x)

print(grad_xx[0])
>>>tensor(6.)

grad_xx这里也可以直接用backward(),相当于直接从 ∂z/∂x=2xy 开始回传

复制代码
# autograd.grad() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

grad = torch.autograd.grad(outputs=z, inputs=x, create_graph=True)
grad[0].backward()

print(x.grad)
>>>tensor(6.)

也可以先用backward()然后对x.grad这个一阶导继续求导

复制代码
# backward() + autograd.grad()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True)
grad_xx = torch.autograd.grad(outputs=x.grad, inputs=x)

print(grad_xx[0])
>>>tensor(6.)

那是不是也可以直接用两次backward()呢?第二次直接x.grad从开始回传,我们试一下

复制代码
# backward() + backward()
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True) # x.grad = 12
x.grad.backward()

print(x.grad)
>>>tensor(18., grad_fn=<CopyBackwards>)

发现了问题,结果不是6,而是18,发现第一次回传时输出x梯度是12。这是因为PyTorch使用backward()时默认会累加梯度,需要手动把前一次的梯度清零

复制代码
x = torch.tensor(2.).requires_grad_()
y = torch.tensor(3.).requires_grad_()

z = x * x * y

z.backward(create_graph=True)
x.grad.data.zero_()
x.grad.backward()

print(x.grad)
>>>tensor(6., grad_fn=<CopyBackwards>)

向量求导

有没有发现前面都是对标量求导,如果不是标量会怎么样呢?

复制代码
x = torch.tensor([1., 2.]).requires_grad_()
y = x + 1

y.backward()
print(x.grad)
>>>RuntimeError: grad can be implicitly created only for scalar outputs
复制代码
x = torch.tensor([1., 2.]).requires_grad_()
y = x * x

y.sum().backward()
print(x.grad)
>>>tensor([2., 4.])
相关推荐
求知呀39 分钟前
最直观的 Cursor 使用教程
前端·人工智能·llm
utmhikari1 小时前
【日常随笔】万字长文,如何用pyside6开发一个python桌面工具
前端·python·pyqt
飞哥数智坊1 小时前
从“工具人”到“超级个体”:程序员如何在AI协同下实现能力跃迁
人工智能
chenqi1 小时前
WebGPU和WebLLM:在浏览器中解锁端侧大模型的未来
前端·人工智能
罗西的思考2 小时前
[2W字长文] 探秘Transformer系列之(23)--- 长度外推
人工智能·算法
小杨4043 小时前
python入门系列十四(多进程)
人工智能·python·pycharm
阿坡RPA18 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499318 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心18 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI20 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法