pytorch 下查看cuda是否可用,cuda版本以及cudnn版本信息

在 PyTorch 中,你可以很容易地检查 CUDA 是否可用、CUDA 的版本以及 cuDNN 的版本信息。以下是如何在 PyTorch 中获取这些信息的步骤:

检查 CUDA 是否可用

首先,你需要检查 CUDA 是否在你的系统上可用。PyTorch 提供了一个简单的方法来检查这一点。

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

获取 CUDA 版本

你可以使用 torch.version.cuda 来获取 CUDA 的版本信息。

python 复制代码
import torch

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

获取 cuDNN 版本

你可以使用 torch.backends.cudnn.version() 来获取 cuDNN 的版本信息。

python 复制代码
import torch

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

完整示例代码

将上述所有部分组合在一起,完整的示例代码如下:

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

运行结果示例

假设你运行了上述代码,并且 CUDA 和 cuDNN 都已正确安装和配置,你可能会看到类似以下的输出:

plaintext 复制代码
CUDA available: True
Current device: NVIDIA GeForce RTX 3090
CUDA Version: 11.1
cuDNN Version: 8200

注意事项

  1. 环境配置 :确保你的环境中已经安装了 PyTorch 并且支持 CUDA。如果你使用的是 CPU 版本的 PyTorch,torch.cuda.is_available() 将返回 False
  2. 依赖库:确保你已经安装了正确的 CUDA 和 cuDNN 库,并且它们与你的 PyTorch 版本兼容。
  3. 多 GPU 环境 :如果你有多个 GPU,可以使用 torch.cuda.device_count() 来获取 GPU 数量,并通过 torch.cuda.get_device_name(i) 获取每个 GPU 的名称。

希望这些信息能帮助你检查 CUDA 和 cuDNN 的版本信息!如果你有更多问题或需要进一步的帮助,请告诉我。

相关推荐
即兴小索奇21 分钟前
GPT-4V 是什么?
人工智能
机器学习之心1 小时前
GCN+BiLSTM多特征输入时间序列预测(Pytorch)
人工智能·pytorch·python·gcn+bilstm
码农-阿甘1 小时前
小牛视频翻译 ( 视频翻译 字幕翻译 字幕转语音 人声分离)
人工智能
黑龙江亿林等级保护测评1 小时前
等保行业如何选择核实的安全防御技术
网络·人工智能·python·安全·web安全·智能路由器·ddos
ai产品老杨1 小时前
深度学习模型量化原理
开发语言·人工智能·python·深度学习·安全·音视频
马甲是掉不了一点的<.<1 小时前
计算机视觉常用数据集Cityscapes的介绍、下载、转为YOLO格式进行训练
人工智能·yolo·目标检测·计算机视觉·计算机视觉数据集
weixin_eng020482 小时前
清仓和斩仓有什么不一样?
人工智能·金融·区块链
坠金2 小时前
神经网络的常用layer
人工智能·深度学习·神经网络
jun7788952 小时前
NLP自然语言处理中的Attention机制原理揭秘
人工智能·自然语言处理
长命百岁️2 小时前
【想法】NLP的基石-Word Embedding
人工智能·自然语言处理·embedding