pytorch 下查看cuda是否可用,cuda版本以及cudnn版本信息

在 PyTorch 中,你可以很容易地检查 CUDA 是否可用、CUDA 的版本以及 cuDNN 的版本信息。以下是如何在 PyTorch 中获取这些信息的步骤:

检查 CUDA 是否可用

首先,你需要检查 CUDA 是否在你的系统上可用。PyTorch 提供了一个简单的方法来检查这一点。

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

获取 CUDA 版本

你可以使用 torch.version.cuda 来获取 CUDA 的版本信息。

python 复制代码
import torch

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

获取 cuDNN 版本

你可以使用 torch.backends.cudnn.version() 来获取 cuDNN 的版本信息。

python 复制代码
import torch

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

完整示例代码

将上述所有部分组合在一起,完整的示例代码如下:

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

运行结果示例

假设你运行了上述代码,并且 CUDA 和 cuDNN 都已正确安装和配置,你可能会看到类似以下的输出:

plaintext 复制代码
CUDA available: True
Current device: NVIDIA GeForce RTX 3090
CUDA Version: 11.1
cuDNN Version: 8200

注意事项

  1. 环境配置 :确保你的环境中已经安装了 PyTorch 并且支持 CUDA。如果你使用的是 CPU 版本的 PyTorch,torch.cuda.is_available() 将返回 False
  2. 依赖库:确保你已经安装了正确的 CUDA 和 cuDNN 库,并且它们与你的 PyTorch 版本兼容。
  3. 多 GPU 环境 :如果你有多个 GPU,可以使用 torch.cuda.device_count() 来获取 GPU 数量,并通过 torch.cuda.get_device_name(i) 获取每个 GPU 的名称。

希望这些信息能帮助你检查 CUDA 和 cuDNN 的版本信息!如果你有更多问题或需要进一步的帮助,请告诉我。

相关推荐
CS创新实验室12 分钟前
AI 与编程
人工智能·编程·编程语言
min18112345626 分钟前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
_codemonster28 分钟前
高斯卷积的可加性定理
人工智能·计算机视觉
数据智研1 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
likuolei1 小时前
Spring AI框架完整指南
人工智能·python·spring
梵得儿SHI1 小时前
(第四篇)Spring AI 核心技术攻坚:多轮对话与记忆机制,打造有上下文的 AI
java·人工智能·spring·springai生态·上下文丢失问题·三类记忆·智能客服实战案
二哈喇子!1 小时前
PyTorch生态与昇腾平台适配:环境搭建与详细安装指南
人工智能·pytorch·python
lingzhilab1 小时前
零知ESP32-S3 部署AI小智 2.1,继电器和音量控制以及页面展示音量
人工智能
两万五千个小时2 小时前
AI Agent 框架演进
人工智能
li星野2 小时前
OpenCV4X学习—核心模块Core
人工智能·opencv·学习