pytorch 下查看cuda是否可用,cuda版本以及cudnn版本信息

在 PyTorch 中,你可以很容易地检查 CUDA 是否可用、CUDA 的版本以及 cuDNN 的版本信息。以下是如何在 PyTorch 中获取这些信息的步骤:

检查 CUDA 是否可用

首先,你需要检查 CUDA 是否在你的系统上可用。PyTorch 提供了一个简单的方法来检查这一点。

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

获取 CUDA 版本

你可以使用 torch.version.cuda 来获取 CUDA 的版本信息。

python 复制代码
import torch

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

获取 cuDNN 版本

你可以使用 torch.backends.cudnn.version() 来获取 cuDNN 的版本信息。

python 复制代码
import torch

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

完整示例代码

将上述所有部分组合在一起,完整的示例代码如下:

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

运行结果示例

假设你运行了上述代码,并且 CUDA 和 cuDNN 都已正确安装和配置,你可能会看到类似以下的输出:

plaintext 复制代码
CUDA available: True
Current device: NVIDIA GeForce RTX 3090
CUDA Version: 11.1
cuDNN Version: 8200

注意事项

  1. 环境配置 :确保你的环境中已经安装了 PyTorch 并且支持 CUDA。如果你使用的是 CPU 版本的 PyTorch,torch.cuda.is_available() 将返回 False
  2. 依赖库:确保你已经安装了正确的 CUDA 和 cuDNN 库,并且它们与你的 PyTorch 版本兼容。
  3. 多 GPU 环境 :如果你有多个 GPU,可以使用 torch.cuda.device_count() 来获取 GPU 数量,并通过 torch.cuda.get_device_name(i) 获取每个 GPU 的名称。

希望这些信息能帮助你检查 CUDA 和 cuDNN 的版本信息!如果你有更多问题或需要进一步的帮助,请告诉我。

相关推荐
Wendy144127 分钟前
【灰度实验】——图像预处理(OpenCV)
人工智能·opencv·计算机视觉
中杯可乐多加冰38 分钟前
五大低代码平台横向深度测评:smardaten 2.0领衔AI原型设计
人工智能
无线图像传输研究探索1 小时前
单兵图传终端:移动场景中的 “实时感知神经”
网络·人工智能·5g·无线图传·5g单兵图传
zzywxc7872 小时前
AI在编程、测试、数据分析等领域的前沿应用(技术报告)
人工智能·深度学习·机器学习·数据挖掘·数据分析·自动化·ai编程
铭keny2 小时前
YOLOv8 基于RTSP流目标检测
人工智能·yolo·目标检测
墨尘游子3 小时前
11-大语言模型—Transformer 盖楼,BERT 装修,RoBERTa 直接 “拎包入住”|预训练白话指南
人工智能·语言模型·自然语言处理
金井PRATHAMA3 小时前
主要分布于内侧内嗅皮层的层Ⅲ的网格-速度联合细胞(Grid × Speed Conjunctive Cells)对NLP中的深层语义分析的积极影响和启示
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·知识图谱
天道哥哥3 小时前
InsightFace(RetinaFace + ArcFace)人脸识别项目(预训练模型,鲁棒性很好)
人工智能·目标检测
幻风_huanfeng3 小时前
学习人工智能所需知识体系及路径详解
人工智能·学习
云道轩4 小时前
使用Docker在Rocky Linux 9.5上在线部署LangFlow
linux·人工智能·docker·容器·langflow