pytorch 下查看cuda是否可用,cuda版本以及cudnn版本信息

在 PyTorch 中,你可以很容易地检查 CUDA 是否可用、CUDA 的版本以及 cuDNN 的版本信息。以下是如何在 PyTorch 中获取这些信息的步骤:

检查 CUDA 是否可用

首先,你需要检查 CUDA 是否在你的系统上可用。PyTorch 提供了一个简单的方法来检查这一点。

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

获取 CUDA 版本

你可以使用 torch.version.cuda 来获取 CUDA 的版本信息。

python 复制代码
import torch

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

获取 cuDNN 版本

你可以使用 torch.backends.cudnn.version() 来获取 cuDNN 的版本信息。

python 复制代码
import torch

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

完整示例代码

将上述所有部分组合在一起,完整的示例代码如下:

python 复制代码
import torch

# 检查 CUDA 是否可用
print(f"CUDA available: {torch.cuda.is_available()}")

# 如果 CUDA 可用,打印当前设备名称
if torch.cuda.is_available():
    print(f"Current device: {torch.cuda.get_device_name(0)}")

# 获取 CUDA 版本
cuda_version = torch.version.cuda
print(f"CUDA Version: {cuda_version}")

# 获取 cuDNN 版本
cudnn_version = torch.backends.cudnn.version()
print(f"cuDNN Version: {cudnn_version}")

运行结果示例

假设你运行了上述代码,并且 CUDA 和 cuDNN 都已正确安装和配置,你可能会看到类似以下的输出:

plaintext 复制代码
CUDA available: True
Current device: NVIDIA GeForce RTX 3090
CUDA Version: 11.1
cuDNN Version: 8200

注意事项

  1. 环境配置 :确保你的环境中已经安装了 PyTorch 并且支持 CUDA。如果你使用的是 CPU 版本的 PyTorch,torch.cuda.is_available() 将返回 False
  2. 依赖库:确保你已经安装了正确的 CUDA 和 cuDNN 库,并且它们与你的 PyTorch 版本兼容。
  3. 多 GPU 环境 :如果你有多个 GPU,可以使用 torch.cuda.device_count() 来获取 GPU 数量,并通过 torch.cuda.get_device_name(i) 获取每个 GPU 的名称。

希望这些信息能帮助你检查 CUDA 和 cuDNN 的版本信息!如果你有更多问题或需要进一步的帮助,请告诉我。

相关推荐
martian6651 小时前
【人工智能数学基础篇】——深入详解多变量微积分:在机器学习模型中优化损失函数时应用
人工智能·机器学习·微积分·数学基础
人机与认知实验室2 小时前
人、机、环境中各有其神经网络系统
人工智能·深度学习·神经网络·机器学习
黑色叉腰丶大魔王2 小时前
基于 MATLAB 的图像增强技术分享
图像处理·人工智能·计算机视觉
迅易科技5 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神6 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI6 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长7 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME8 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室8 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself8 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot