python-PyQt项目实战案例:制作一个视频播放器

文章目录

    • [1. 关键问题描述](#1. 关键问题描述)
    • [2. 通过OpenCV读取视频/打开摄像头抓取视频](#2. 通过OpenCV读取视频/打开摄像头抓取视频)
    • [3. 通过PyQt 中的 QTimer定时器实现视频播放](#3. 通过PyQt 中的 QTimer定时器实现视频播放)
    • [4. PyQt 视频播放器实现代码](#4. PyQt 视频播放器实现代码)
    • 参考文献

1. 关键问题描述

在前面的文章中已经分享了pyqt制作图像处理工具的文章,也知道pyqt通过使用label控件显示图像的方式。在此,对于视频的显示,其本质上一帧一帧的图像,因此也可以使用同样的方式对其显示。但是,有两个关键的问题需要解决,也即:

a. 如何读取视频/或通过摄像头抓取视频

b. 如果连续显示视频图像且不会造成界面假死

2. 通过OpenCV读取视频/打开摄像头抓取视频

主要函数:

python 复制代码
cv.VideoCapture.isOpened(),检查视频捕获是否初始化成功
cv.VideoCapture.read(),捕获视频文件、视频流或捕获的视频设备
cv.VideoCapture.release(),关闭视频文件或设备,释放对象
cv.VideoWriter.release(),关闭视频写入,释放对象

抓取视频

python 复制代码
import cv2
import time

cap = cv2.VideoCapture(0, cv2.CAP_DSHOW) # 使用cv2.CAP_DSHOW后启动快,但帧率慢了
cap.set(6, cv2.VideoWriter.fourcc('M', 'J', 'P', 'G'))
# cap.set(6, cv2.VideoWriter.fourcc('Y', 'U', 'V', '2'))

# 使用cv2.CAP_DSHOW后大小为640
cap.set(3, 2560)  # 640 1280 1920  2560# 宽
# cap.set(4, 720)   # 720  1080  # 高
# cap.set(5, 60)  # 帧数
# cap.set(10, 150)  # 亮度
# cap.set(14, 150)  # 增益
# cap.set(11, 90)  # 对比度
# cap.set(15, 150)  # 曝光

print(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
print(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(cap.get(cv2.CAP_PROP_FPS))

num = 0
start = time.time()
fps = '0'
while(True):
    ret, frame = cap.read()
    num = num + 1
    frame = cv2.flip(frame, 1)
    # frame = beauty_face(frame)
    if (time.time() - start) > 1:
        fps = num / (time.time() - start)
        fps = str(round(fps, 2))
        num = 0
        start = time.time()
    cv2.putText(frame, "FPS:" + fps, (20, 20), 1, 1.5, (255, 255, 255), 2)
    cv2.imshow("DST", frame)

    stop = time.time()
    elapsed = stop - start
    # print('time=', elapsed)
    if 1 < elapsed < 1.5:
        print('time=', elapsed)
        print('frame num:', num)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()

读取视频

python 复制代码
import cv2 as cv

if __name__ == '__main__':
    # 创建视频读取/捕获对象
    vedioRead = "../images/test.mp4"  # 读取视频文件的路径
    capRead = cv.VideoCapture(vedioRead)  # 实例化 VideoCapture 类

    # 读取视频文件
    frameNum = 0  # 视频帧数初值
    while capRead.isOpened():  # 检查视频捕获是否成功
        ret, frame = capRead.read()  # 读取下一帧视频图像
        if ret is True:
            cv.imshow(vedioRead, frame)  # 播放视频图像
            if cv.waitKey(1) & 0xFF == ord('q'):  # 按 'q' 退出
                break
        else:
            print("Can't receive frame at frameNum {}".format(frameNum))
            break

    capRead.release()  # 关闭读取视频文件
    capWrite.release()  # 关闭视频写入对象
    cv.destroyAllWindows()  # 关闭显示窗口

3. 通过PyQt 中的 QTimer定时器实现视频播放

使用 OpenCV 对视频文件进行解码获得图像帧以后,可以使用 QTime 定时器来控制 QLabel 控件中的图像更新,实现视频播放。

PyQt5 中的 QTimer类提供了重复的和单次的定时器,为计时器提供了高级编程接口。

要使用定时器,需要先创建一个QTimer实例,将定时器的timeout信号连接到相应的槽函数,并调用start(),定时器就会以设定的间隔发出timeout信号。

QTimer类中的常用方法:

start(milliseconds):启动或重新启动定时器,时间间隔为毫秒。如果定时器已经运行,它将被停止并重新启动。如果singleShot信号为真,定时器将仅被激活一次。

stop():停止定时器

QTimer类中的常用信号:

singleShot:在给定的时间间隔后调用一个槽函数时发射此信号。

timeout:当定时器超时时发射此信号。

注意:可以设置槽函数的执行次数,默认为定时器开启后周期性调用槽函数。如果设置了setSingleShot(True),则槽函数仅执行一次。

关键代码:

python 复制代码
# 初始化定时器,并绑定触发信号
self.timerCam = QtCore.QTimer()  # 定时器,毫秒
self.timerCam.timeout.connect(self.refreshFrame)  # 计时器结束时调用槽函数刷新当前帧

# 开始定时
if self.cap.isOpened():      # 检查视频捕获是否成功
    self.timerCam.start(20)  # 设置计时间隔并启动,定时结束将触发刷新当前帧
# 暂停播放
self.timerCam.blockSignals(True)  # 信号阻塞,暂停定时器
# 继续播放
self.timerCam.blockSignals(False)  # 取消信号阻塞,恢复定时器

4. PyQt 视频播放器实现代码

python 复制代码
import os
import sys
import cv2 as cv
import numpy as np
from PyQt5 import QtCore
from PyQt5.QtCore import QObject, pyqtSignal, QPoint, QRect, qDebug, Qt
from PyQt5.QtWidgets import *
from PyQt5.QtGui import *
from ui_VideoProV1 import Ui_MainWindow  # 导入 uiDemo8.py 中的 Ui_MainWindow 界面类


class MyMainWindow(QMainWindow, Ui_MainWindow):  # 继承 QMainWindow 类和 Ui_MainWindow 界面类
    def __init__(self, parent=None):
        super(MyMainWindow, self).__init__(parent)  # 初始化父类
        self.setupUi(self)  # 继承 Ui_MainWindow 界面类

        self.timerCam = QtCore.QTimer()  # 定时器,毫秒
        self.cap = None
        self.frameNum = 1  # 视频帧数初值
        self.edge_flag = False
        self.smooth_flag = False

        # 添加可点击执行的菜单
        self.menu_file = QMenu("文件", self)
        temp = self.menuBar()
        temp.addMenu(self.menu_file)

        t = self.menu_file
        self.action_open = QAction("打开", self)
        self.action_open.triggered.connect(self.openVideo)
        t.addAction(self.action_open)
        self.action_save = QAction("保存", self)
        t.addAction(self.action_save)
        t.addAction('其他')

        self.mTest = QAction("帮助", self)
        self.mTest.triggered.connect(self.trigger_actHelp)
        temp = self.menuBar()
        temp.addAction(self.mTest)

        self.action_close = QAction("退出", self)
        self.action_close.triggered.connect(self.close)
        temp = self.menuBar()
        temp.addAction(self.action_close)
        #
        # # 菜单栏
        self.action_save.triggered.connect(self.saveSlot)  # 连接并执行 openSlot 子程序

        # 通过 connect 建立信号/槽连接,点击按钮事件发射 triggered 信号,执行相应的子程序 click_pushButton
        self.pushButton.clicked.connect(self.openVideo)
        self.pushButton_2.clicked.connect(self.playVideo)
        self.pushButton_3.clicked.connect(self.pauseVideo)
        self.pushButton_4.clicked.connect(self.click_pushButton_5)  # # 按钮触发:边缘检测
        self.pushButton_5.clicked.connect(self.click_pushButton_6)  # 点击 # 按钮触发:双边

        self.timerCam.timeout.connect(self.refreshFrame)  # 计时器结束时调用槽函数刷新当前帧

        # 初始化
        self.frame = np.ndarray(())
        self.videoPath = 'test'

        self.textEdit_log.append("欢迎回来!")
        return

    def openVideo(self):  # 读取视频文件,点击 pushButton_1 触发
        try:
            self.videoPath, _ = QFileDialog.getOpenFileName(self, "Open Video", "../images/", "*.mp4 *.avi *.flv")
            print("Open Video: ", self.videoPath)
        except:
            print("Open video failed.")
        return

    def playVideo(self):  # 播放视频文件,点击 pushButton_2 触发
        if self.timerCam.isActive() == False:
            if self.videoPath.endswith(('avi', 'mp4')):
                self.cap = cv.VideoCapture(self.videoPath)
                self.textEdit_log.append('open video successfully')
            else:
                self.cap = cv.VideoCapture(0)
                self.textEdit_log.append('open camera successfully')

            if self.cap.isOpened():      # 检查视频捕获是否成功
                self.timerCam.start(20)  # 设置计时间隔并启动,定时结束将触发刷新当前帧
        else:  #
            self.timerCam.stop()  # 停止定时器
            self.cap.release()    # 关闭读取视频文件
            self.label_1.clear()  # 清除显示内容
        return

    def pauseVideo(self):
        self.timerCam.blockSignals(False)  # 取消信号阻塞,恢复定时器
        if self.timerCam.isActive() and self.frameNum % 2 == 1:
            self.timerCam.blockSignals(True)  # 信号阻塞,暂停定时器
            self.pushButton_3.setText("继续")  # 点击"继续",恢复播放
            print("信号阻塞,暂停播放。", self.frameNum)
            self.textEdit_log.append("信号阻塞,暂停播放。" + str(self.frameNum))
        else:
            self.pushButton_3.setText("暂停")  # 点击"暂停",暂停播放
            print("取消阻塞,恢复播放。", self.frameNum)
            self.textEdit_log.append("取消阻塞,恢复播放。" + str(self.frameNum))
        self.frameNum = self.frameNum + 1

    def refreshFrame(self):  # 刷新视频图像
        ret, self.frame = self.cap.read()  # 读取下一帧视频图像
        self.frame = cv.flip(self.frame, 1)

        if self.smooth_flag:
            self.frame = cv.bilateralFilter(self.frame, 15, 30, 40, None)
        if self.edge_flag:
            # self.frame = cv.Canny(self.frame, 10, 60)
            self.frame = self.apply_heat_effect(self.frame)

        qImg = self.cvToQImage(self.frame)  # OpenCV 转为 PyQt 图像格式
        self.label_1.setScaledContents(True)
        self.label_1.setPixmap((QPixmap.fromImage(qImg)))  # 加载 PyQt 图像
        # self.frameNum = self.frameNum + 1
        # print("视频帧数:", self.frameNum)
        return

    def cvToQImage(self, image):
        if image.dtype == np.uint8:
            channels = 1 if len(image.shape) == 2 else image.shape[2]
        if channels == 3:
            qImg = QImage(image, image.shape[1], image.shape[0], image.strides[0], QImage.Format_RGB888)
            return qImg.rgbSwapped()
        elif channels == 1:
            qImg = QImage(image, image.shape[1], image.shape[0], image.strides[0], QImage.Format_Indexed8)
            return qImg
        else:
            QtCore.qDebug("ERROR: numpy.ndarray could not be converted to QImage. Channels = %d" % image.shape[2])
            return QImage()

    def click_pushButton_5(self):
        if self.edge_flag:
            self.edge_flag = False
            self.textEdit_log.append('close edge mode successfully')
        else:
            self.edge_flag = True
            self.textEdit_log.append('open edge mode successfully')
        return

    def click_pushButton_6(self):
        if self.smooth_flag:
            self.smooth_flag = False
            self.textEdit_log.append('close smooth mode successfully')
        else:
            self.smooth_flag = True
            self.textEdit_log.append('open smooth mode successfully')
        return

    def saveSlot(self):  # 保存图像文件
        # 选择存储文件 dialog
        try:
            fileName, tmp = QFileDialog.getSaveFileName(self, "Save Image", "../images/", '*.png; *.jpg; *.tif')
            if self.frame.size == 1:
                return
            # OpenCV 写入图像文件
            ret = cv.imwrite(fileName, self.frame)
            if ret:
                print(fileName, self.frame.shape)
        except:
            print('save failed.')
        return

    def cvToQImage(self, image):
        # 8-bits unsigned, NO. OF CHANNELS=1
        if image.dtype == np.uint8:
            channels = 1 if len(image.shape) == 2 else image.shape[2]
        if channels == 3:  # CV_8UC3
            # Create QImage with same dimensions as input Mat
            qImg = QImage(image, image.shape[1], image.shape[0], image.strides[0], QImage.Format_RGB888)
            return qImg.rgbSwapped()
        elif channels == 1:
            # Create QImage with same dimensions as input Mat
            qImg = QImage(image, image.shape[1], image.shape[0], image.strides[0], QImage.Format_Indexed8)
            return qImg
        else:
            qDebug("ERROR: numpy.ndarray could not be converted to QImage. Channels = %d" % image.shape[2])
            return QImage()

    def qPixmapToCV(self, qPixmap):  # PyQt图像 转换为 OpenCV图像
        qImg = qPixmap.toImage()  # QPixmap 转换为 QImage
        shape = (qImg.height(), qImg.bytesPerLine() * 8 // qImg.depth())
        shape += (4,)
        ptr = qImg.bits()
        ptr.setsize(qImg.byteCount())
        image = np.array(ptr, dtype=np.uint8).reshape(shape)  # 定义 OpenCV 图像
        image = image[..., :3]
        return image

    def trigger_actHelp(self):  # 动作 actHelp 触发
        QMessageBox.about(self, "About", """打开视频或摄像头 v1.0""")
        return

    def closeEvent(self):
        self.timerCam.stop()  # 停止定时器
        self.cap.release()  # 关闭读取视频文件
        self.label_1.clear()  # 清除显示内容

if __name__ == '__main__':
    app = QApplication(sys.argv)
    myWin = MyMainWindow()
    myWin.show()
    sys.exit(app.exec_())

参考文献

[1] OpenCV-PyQT项目实战(9)项目案例04:视频播放

相关推荐
Narutolxy1 小时前
探索开源语音识别的未来:高效利用先进的自动语音识别技术20241030
python·macos·xcode
Mopes__3 小时前
Python | Leetcode Python题解之第517题超级洗衣机
python·leetcode·题解
测试老哥5 小时前
Python+Selenium+Pytest+POM自动化测试框架封装(完整版)
自动化测试·软件测试·python·selenium·测试工具·职场和发展·测试用例
Ws_5 小时前
蓝桥杯 python day01 第一题
开发语言·python·蓝桥杯
神雕大侠mu6 小时前
函数式接口与回调函数实践
开发语言·python
萧鼎7 小时前
【Python】高效数据处理:使用Dask处理大规模数据
开发语言·python
互联网杂货铺7 小时前
Python测试框架—pytest详解
自动化测试·软件测试·python·测试工具·测试用例·pytest·1024程序员节
Ellie陈7 小时前
Java已死,大模型才是未来?
java·开发语言·前端·后端·python
菜鸟的人工智能之路7 小时前
ROC 曲线:医学研究中的得力助手
python·数据分析·健康医疗
梦幻精灵_cq7 小时前
python包结构模块如何有效传递数据?
python