LLM之RAG实战(四十四)| rag-chatbot:支持Huggingface和Ollama任意模型的多PDF本地RAG方案

特点:

  • 支持本地运行和Kaggle (new)运行
  • 支持HuggingfaceOllama 的任意模型
  • Process multiple PDF inputs.
  • Chat with multiples languages (Coming soon).
  • Simple UI with Gradio.

一、安装使用

1.1 Kaggle(推荐)

Step1:把https://github.com/datvodinh/rag-chatbot/blob/main/notebooks/kaggle.ipynb脚本导入到Kaggle。

Step2:把<YOUR_NGROK_TOKEN>替换为自己的token。

1.2 本地安装

a)克隆项目

复制代码
git clone https://github.com/datvodinh/rag-chatbot.gitcd rag-chatbot

b)安装

Docker方式

复制代码
docker compose up --build

脚本方式(Ollama, Ngrok, python package)

复制代码
source ./scripts/install_extra.sh

手动安装

Step1:Ollama
Step2:Ngrok

Step3:安装rag_chatbot包

复制代码
source ./scripts/install.sh

c)启动

复制代码
source ./scripts/run.sh

或者

复制代码
python -m rag_chatbot --host localhost

使用Ngrok

复制代码
source ./scripts/run.sh --ngrok

此时,会下载大模型

大模型的配置文件:https://github.com/datvodinh/rag-chatbot/blob/main/rag_chatbot/setting/setting.py

LLM默认是:llama3:8b-instruct-q8_0

Embedding模型默认是:BAAI/bge-large-en-v1.5

此时,登录http://0.0.0.0:7860即可访问:

参考文献:

1\] https://github.com/datvodinh/rag-chatbot

相关推荐
Light6034 分钟前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升39 分钟前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide1 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农1 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews1 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体1 小时前
机器人的罪与罚
人工智能·机器人
三不原则1 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM2 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员2 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay2 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全