2024年妈杯MathorCup大数据竞赛赛题浅析——助攻快速选题

一图流:

赛题难度 A:B=2:3

选题人数 A:B=2:2.5

2024年妈杯大数据竞赛初赛整体难度约为0.6个国赛。A题为台风中心路径相关问题,为评价+预测问题;B题为库存和销量的预测+优化问题。B题难度稍大于A题,可以根据自己队伍情况进行选择。26日早六点之前发布AB两题相关解题代码+论文。

A:台风的分类与预测

问题1:台风分类评价模型

任务:分析台风特征(强度、等级、风速等)与气温、气压、季风等气象因素之间的关系,构建分类模型来划分台风的类别。

思路:你可以考虑使用多变量分析(例如主成分分析PCA、聚类分析等)来分析这些气象因素与台风特征之间的相关性,并依据这些特征构建分类标准。可以将监督学习(如决策树、随机森林)或无监督学习(如K-means聚类)用于模型的训练。

问题2:台风路径预测模型

任务:利用气温、气压、洋流、风场等因素预测台风路径,并采用动态时间规整算法(DTW)与实际路径进行比较。

思路:可使用时间序列模型(如ARIMA或LSTM等神经网络模型)来预测台风的轨迹,并结合DTW算法对模型的预测路径与实际路径进行对比分析,以评估预测的准确性。

问题3:台风登陆后的风速与降水量预测模型

任务:构建模型,描述台风登陆后风速和降水量的衰减过程,以及降水量与距台风中心的距离关系。

思路:可以基于物理模型(如衰减函数模型或指数衰减模型)来描述台风登陆后风速和降水的变化规律,或者通过统计模型(如线性回归、非线性回归)分析历史数据中台风强度、降水量与距离的关系。

赛道B:电商品类货量预测及品类分仓规划

问题1:货量预测模型

任务:预测350个品类在未来三个月的库存量(按月)和销量(按日)。

思路:可以基于时间序列分析模型(如指数平滑、ARIMA、Prophet等)对每个品类的库存量和销量进行预测。使用的模型需要能够捕捉到历史趋势和季节性变化。

问题2:"一品一仓"分仓方案

任务:基于问题1的预测结果,制定"一品一仓"分仓方案,在仓容和产能限制下,规划每个品类应存放的仓库。

思路:这个问题可以看作一个经典的线性规划或整数规划问题,约束条件包括每个仓库的仓容和产能。可以采用线性规划算法(如单纯形法)或启发式算法(如遗传算法、模拟退火算法)来求解最优的分仓方案。

问题3:"一品多仓"分仓方案

任务:允许每个品类最多分配到3个仓库,考虑品类关联度、仓库容量和产能的限制,制定新的分仓方案。

思路:这需要建立多目标优化模型,平衡品类关联度、仓库容量、产能等多个约束。可以考虑混合整数规划模型(MILP),或者使用多目标优化算法(如Pareto优化)来得到最优解。

相关推荐
wan5555cn6 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
nju_spy6 小时前
华为AI岗 -- 笔试(一)
人工智能·深度学习·机器学习·华为·笔试·dbscan·掩码多头自注意力
LiJieNiub7 小时前
YOLO-V1 与 YOLO-V2 核心技术解析:目标检测的迭代突破
人工智能·yolo·目标检测
初学小刘7 小时前
深度学习在目标检测中的应用与挑战
人工智能·深度学习·目标检测
AKAMAI8 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云原生·云计算
板凳坐着晒太阳8 小时前
Flink 作业通用优化方案
大数据·flink
OpenBayes8 小时前
教程上新|重新定义下一代 OCR:IBM 最新开源 Granite-docling-258M,实现端到端的「结构+内容」统一理解
人工智能·深度学习·机器学习·自然语言处理·ocr·图像识别·文档处理
985小水博一枚呀8 小时前
【AI大模型学习路线】第三阶段之RAG与LangChain——第十九章(实战基于Advanced RAG的PDF问答)系统部署与测试?
人工智能·学习·langchain·pdf
腾视科技9 小时前
让安全驾驶有“AI”相伴|腾视科技DMS视频监控一体机,守护每一次出行
人工智能·科技·安全
补三补四9 小时前
Git 基础操作指南
大数据·git·elasticsearch