单细胞 | 转录因子足迹分析

数据加载

在本案例中,将采用之前在轨迹构建案例中已经介绍并处理过的数据集。

library(Signac)
library(Seurat)

bone <- readRDS("cd34.rds")
DimPlot(bone, label = TRUE)

要执行足迹分析,必须首先向对象中添加Motif 信息,这包括每个Motif 的精确位置。这一过程可以通过使用"motif"和"packages"这两个包中的函数来实现。

library(motifmatchr)
library(JASPAR2020)
library(TFBSTools)
library(BSgenome.Hsapiens.UCSC.hg19)

# extract position frequency matrices for the motifs
pwm <- getMatrixSet(
  x = JASPAR2020,
  opts = list(species = 9606, all_versions = FALSE)
)

# add motif information
bone <- AddMotifs(bone, genome = BSgenome.Hsapiens.UCSC.hg19, pfm = pwm)

Motif 足迹分析

现在可以对任何已知位置信息的Motif 进行足迹分析。通常,这会涵盖基因组中所有该Motif 的实例。也可以设置 in.peaks = TRUE 参数,以便只考虑那些位于分析中峰值区域内的Motif 。Footprint() 函数会收集所有必要的数据,并将其保存在分析结果中。之后,可以使用 PlotFootprint() 函数来绘制这些基序的足迹图。

# gather the footprinting information for sets of motifs
bone <- Footprint(
  object = bone,
  motif.name = c("GATA2", "CEBPA", "EBF1"),
  genome = BSgenome.Hsapiens.UCSC.hg19
)

# plot the footprint data for each group of cells
p2 <- PlotFootprint(bone, features = c("GATA2", "CEBPA", "EBF1"))

p2 + patchwork::plot_layout(ncol = 1)

本文由mdnice多平台发布

相关推荐
qq_17448285756 小时前
springboot基于微信小程序的旧衣回收系统的设计与实现
spring boot·后端·微信小程序
锅包肉的九珍6 小时前
Scala的Array数组
开发语言·后端·scala
心仪悦悦6 小时前
Scala的Array(2)
开发语言·后端·scala
2401_882727577 小时前
BY组态-低代码web可视化组件
前端·后端·物联网·低代码·数学建模·前端框架
心仪悦悦7 小时前
Scala中的集合复习(1)
开发语言·后端·scala
代码小鑫8 小时前
A043-基于Spring Boot的秒杀系统设计与实现
java·开发语言·数据库·spring boot·后端·spring·毕业设计
真心喜欢你吖8 小时前
SpringBoot与MongoDB深度整合及应用案例
java·spring boot·后端·mongodb·spring
激流丶8 小时前
【Kafka 实战】Kafka 如何保证消息的顺序性?
java·后端·kafka
uzong9 小时前
一个 IDEA 老鸟的 DEBUG 私货之多线程调试
java·后端
飞升不如收破烂~9 小时前
Spring boot常用注解和作用
java·spring boot·后端