大模型Transformer笔记:KV缓存

1 MHA(M ulti-H ead Attention)

  • 最经典的多头注意力
    • 等价于多个独立的单头注意力的拼接
  • 对于LLM来说,一般都是自回归地一个一个token的输出,也就相当于只有Transformer的decoder input在变化,之前作为prompt部分的是不变,可以缓存的(KV cache)
    • KV cache的减少可以让我们有更长的context prompt,更快的推理速度,更低的推理成本

2 MQA(M ulti-Q uery Attention)

Fast Transformer Decoding: One Write-Head is All You Need 2019

PaLM [6]、StarCoder [7]、Gemini [8]

  • 所有注意力头共享同一套K,V
    • ------>KV 缓存减少到1/h
    • KV参数的减少可以到FFN/GLU规模的增大来弥补

3 GQA(G rouped-Q uery Attention)

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints emnlp 2023

所有 Head 分为 g个组( g可以整除 head数量 h)

LLAMA2-70B , LLAMA3

参考内容:缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA

相关推荐
dr李四维13 分钟前
iOS构建版本以及Hbuilder打iOS的ipa包全流程
前端·笔记·ios·产品运营·产品经理·xcode
机器学习之心17 分钟前
一区北方苍鹰算法优化+创新改进Transformer!NGO-Transformer-LSTM多变量回归预测
算法·lstm·transformer·北方苍鹰算法优化·多变量回归预测·ngo-transformer
Suyuoa17 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo
余生H1 小时前
transformer.js(三):底层架构及性能优化指南
javascript·深度学习·架构·transformer
代码不行的搬运工2 小时前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
罗小罗同学2 小时前
医工交叉入门书籍分享:Transformer模型在机器学习领域的应用|个人观点·24-11-22
深度学习·机器学习·transformer
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭2 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~2 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码2 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow