[NeetCode 150] Search for Word II

Given a 2-D grid of characters board and a list of strings words, return all words that are present in the grid.

For a word to be present it must be possible to form the word with a path in the board with horizontally or vertically neighboring cells. The same cell may not be used more than once in a word.

Example 1:

复制代码
Input:
board = [
  ["a","b","c","d"],
  ["s","a","a","t"],
  ["a","c","k","e"],
  ["a","c","d","n"]
],
words = ["bat","cat","back","backend","stack"]

Output: ["cat","back","backend"]

Example 2:

复制代码
Input:
board = [
  ["x","o"],
  ["x","o"]
],
words = ["xoxo"]

Output: []

Constraints:

复制代码
1 <= board.length, board[i].length <= 10
board[i] consists only of lowercase English letter.
1 <= words.length <= 100
1 <= words[i].length <= 10

words[i] consists only of lowercase English letters.

All strings within words are distinct.

Solution

Compared with basic Search for Word, this problem involves multiple queries. For one query, we have to go through the whole matrix and apply DFS, which consume O ( n × m × Len ( w o r d ) ) O(n\times m\times \text{Len}(word)) O(n×m×Len(word)) time complexity. If we simply repeat this process on every query, the time complexity is O ( n × m × ∑ w ∈ w o r d s Len ( w ) ) O(n\times m\times \sum_{w\in words}\text{Len}(w)) O(n×m×∑w∈wordsLen(w)), which is too time-consuming.

In fact, we can go through the whole matrix and apply DFS at each position only once, because in just one going through, we can meet all possible words that can be produced by the matrix. There is no need to repeat it.

One possible solution is to record all strings while we go through the matrix, using a set or hash algorithm, but the number of all possible strings might be large and we only need few among them. The overall time and space complexity will be O ( n 2 m 2 ) O(n^2m^2) O(n2m2).

Actually, the DFS can be much more efficient if we search according to the given word list. To achieve this, we can build a Trie tree on all the words we want to find in the matrix. Then, we simultaneously move on both the matrix and Trie tree. Under the guidance of Trie tree, we only search the position that can compose a prefix of target words. Although in the worst case, the time complexity will still be O ( n 2 m 2 ) O(n^2m^2) O(n2m2), but in general cases, the time complexity will be about O ( ∑ w ∈ w o r d s Len ( w ) ) O( \sum_{w\in words}\text{Len}(w)) O(∑w∈wordsLen(w)) and the space complexity will be constantly O ( n × m + ∑ w ∈ w o r d s Len ( w ) ) O(n\times m+ \sum_{w\in words}\text{Len}(w)) O(n×m+∑w∈wordsLen(w)).

Code

py 复制代码
class Trie:
    def __init__(self):
        self.is_word = [False]
        self.tree = [{}]
        self.id_cnt = 0
        self.word_cnt = [0]
    
    def insert(self, word):
        node = 0
        self.word_cnt[0] += 1
        for c in word:
            if c not in self.tree[node]:
                self.id_cnt += 1
                self.tree[node][c] = self.id_cnt
                self.is_word.append(False)
                self.tree.append({})
                self.word_cnt.append(0)
            node = self.tree[node][c]
            self.word_cnt[node] += 1
        self.is_word[node] = True

    def remove(self, word):
        node = 0
        self.word_cnt[0] -= 1
        for c in word:
            if c not in self.tree[node]:
                return
            node = self.tree[node][c]
            if self.word_cnt[node] <= 0:
                return
            self.word_cnt[node] -= 1
        self.is_word[node] = False



class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = Trie()
        for word in words:
            trie.insert(word)
        ans = []
        vis = set()
        X = [ 1,-1, 0, 0]
        Y = [ 0, 0, 1,-1]
        def dfs(x, y, node, string):
            print(x, y, node, string)
            if trie.word_cnt[node] <= 0:
                return
            if trie.is_word[node]:
                ans.append(string)
                trie.remove(string)
            vis.add((x, y))
            for i in range(4):
                nxt_x = x + X[i]
                nxt_y = y + Y[i]
                if 0 <= nxt_x < len(board) and 0 <= nxt_y < len(board[0]) and (nxt_x, nxt_y) not in vis:
                    nxt_char = board[nxt_x][nxt_y]
                    if nxt_char in trie.tree[node]:
                        dfs(nxt_x, nxt_y, trie.tree[node][nxt_char], string+nxt_char)
            vis.remove((x,y))
            return False

        for i in range(len(board)):
            for j in range(len(board[0])):
                if board[i][j] in trie.tree[0]:
                    dfs(i, j, trie.tree[0][board[i][j]], board[i][j])
        return ans
        
相关推荐
NAGNIP10 小时前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队11 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja16 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下16 小时前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶16 小时前
算法 --- 字符串
算法
博笙困了16 小时前
AcWing学习——差分
c++·算法
NAGNIP16 小时前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP16 小时前
大模型微调框架之LLaMA Factory
算法
echoarts16 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust
Python技术极客16 小时前
一款超好用的 Python 交互式可视化工具,强烈推荐~
算法