[NeetCode 150] Search for Word II

Given a 2-D grid of characters board and a list of strings words, return all words that are present in the grid.

For a word to be present it must be possible to form the word with a path in the board with horizontally or vertically neighboring cells. The same cell may not be used more than once in a word.

Example 1:

复制代码
Input:
board = [
  ["a","b","c","d"],
  ["s","a","a","t"],
  ["a","c","k","e"],
  ["a","c","d","n"]
],
words = ["bat","cat","back","backend","stack"]

Output: ["cat","back","backend"]

Example 2:

复制代码
Input:
board = [
  ["x","o"],
  ["x","o"]
],
words = ["xoxo"]

Output: []

Constraints:

复制代码
1 <= board.length, board[i].length <= 10
board[i] consists only of lowercase English letter.
1 <= words.length <= 100
1 <= words[i].length <= 10

words[i] consists only of lowercase English letters.

All strings within words are distinct.

Solution

Compared with basic Search for Word, this problem involves multiple queries. For one query, we have to go through the whole matrix and apply DFS, which consume O ( n × m × Len ( w o r d ) ) O(n\times m\times \text{Len}(word)) O(n×m×Len(word)) time complexity. If we simply repeat this process on every query, the time complexity is O ( n × m × ∑ w ∈ w o r d s Len ( w ) ) O(n\times m\times \sum_{w\in words}\text{Len}(w)) O(n×m×∑w∈wordsLen(w)), which is too time-consuming.

In fact, we can go through the whole matrix and apply DFS at each position only once, because in just one going through, we can meet all possible words that can be produced by the matrix. There is no need to repeat it.

One possible solution is to record all strings while we go through the matrix, using a set or hash algorithm, but the number of all possible strings might be large and we only need few among them. The overall time and space complexity will be O ( n 2 m 2 ) O(n^2m^2) O(n2m2).

Actually, the DFS can be much more efficient if we search according to the given word list. To achieve this, we can build a Trie tree on all the words we want to find in the matrix. Then, we simultaneously move on both the matrix and Trie tree. Under the guidance of Trie tree, we only search the position that can compose a prefix of target words. Although in the worst case, the time complexity will still be O ( n 2 m 2 ) O(n^2m^2) O(n2m2), but in general cases, the time complexity will be about O ( ∑ w ∈ w o r d s Len ( w ) ) O( \sum_{w\in words}\text{Len}(w)) O(∑w∈wordsLen(w)) and the space complexity will be constantly O ( n × m + ∑ w ∈ w o r d s Len ( w ) ) O(n\times m+ \sum_{w\in words}\text{Len}(w)) O(n×m+∑w∈wordsLen(w)).

Code

py 复制代码
class Trie:
    def __init__(self):
        self.is_word = [False]
        self.tree = [{}]
        self.id_cnt = 0
        self.word_cnt = [0]
    
    def insert(self, word):
        node = 0
        self.word_cnt[0] += 1
        for c in word:
            if c not in self.tree[node]:
                self.id_cnt += 1
                self.tree[node][c] = self.id_cnt
                self.is_word.append(False)
                self.tree.append({})
                self.word_cnt.append(0)
            node = self.tree[node][c]
            self.word_cnt[node] += 1
        self.is_word[node] = True

    def remove(self, word):
        node = 0
        self.word_cnt[0] -= 1
        for c in word:
            if c not in self.tree[node]:
                return
            node = self.tree[node][c]
            if self.word_cnt[node] <= 0:
                return
            self.word_cnt[node] -= 1
        self.is_word[node] = False



class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = Trie()
        for word in words:
            trie.insert(word)
        ans = []
        vis = set()
        X = [ 1,-1, 0, 0]
        Y = [ 0, 0, 1,-1]
        def dfs(x, y, node, string):
            print(x, y, node, string)
            if trie.word_cnt[node] <= 0:
                return
            if trie.is_word[node]:
                ans.append(string)
                trie.remove(string)
            vis.add((x, y))
            for i in range(4):
                nxt_x = x + X[i]
                nxt_y = y + Y[i]
                if 0 <= nxt_x < len(board) and 0 <= nxt_y < len(board[0]) and (nxt_x, nxt_y) not in vis:
                    nxt_char = board[nxt_x][nxt_y]
                    if nxt_char in trie.tree[node]:
                        dfs(nxt_x, nxt_y, trie.tree[node][nxt_char], string+nxt_char)
            vis.remove((x,y))
            return False

        for i in range(len(board)):
            for j in range(len(board[0])):
                if board[i][j] in trie.tree[0]:
                    dfs(i, j, trie.tree[0][board[i][j]], board[i][j])
        return ans
        
相关推荐
py有趣30 分钟前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode
夏鹏今天学习了吗34 分钟前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
吃着火锅x唱着歌3 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程3 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog1233 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
Tiandaren4 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_795167205 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
小当家.1055 小时前
[LeetCode]Hot100系列.贪心总结+思想总结
算法·leetcode·职场和发展
墨雪不会编程5 小时前
数据结构—排序算法篇二
数据结构·算法·排序算法