[NeetCode 150] Search for Word II

Given a 2-D grid of characters board and a list of strings words, return all words that are present in the grid.

For a word to be present it must be possible to form the word with a path in the board with horizontally or vertically neighboring cells. The same cell may not be used more than once in a word.

Example 1:

复制代码
Input:
board = [
  ["a","b","c","d"],
  ["s","a","a","t"],
  ["a","c","k","e"],
  ["a","c","d","n"]
],
words = ["bat","cat","back","backend","stack"]

Output: ["cat","back","backend"]

Example 2:

复制代码
Input:
board = [
  ["x","o"],
  ["x","o"]
],
words = ["xoxo"]

Output: []

Constraints:

复制代码
1 <= board.length, board[i].length <= 10
board[i] consists only of lowercase English letter.
1 <= words.length <= 100
1 <= words[i].length <= 10

words[i] consists only of lowercase English letters.

All strings within words are distinct.

Solution

Compared with basic Search for Word, this problem involves multiple queries. For one query, we have to go through the whole matrix and apply DFS, which consume O ( n × m × Len ( w o r d ) ) O(n\times m\times \text{Len}(word)) O(n×m×Len(word)) time complexity. If we simply repeat this process on every query, the time complexity is O ( n × m × ∑ w ∈ w o r d s Len ( w ) ) O(n\times m\times \sum_{w\in words}\text{Len}(w)) O(n×m×∑w∈wordsLen(w)), which is too time-consuming.

In fact, we can go through the whole matrix and apply DFS at each position only once, because in just one going through, we can meet all possible words that can be produced by the matrix. There is no need to repeat it.

One possible solution is to record all strings while we go through the matrix, using a set or hash algorithm, but the number of all possible strings might be large and we only need few among them. The overall time and space complexity will be O ( n 2 m 2 ) O(n^2m^2) O(n2m2).

Actually, the DFS can be much more efficient if we search according to the given word list. To achieve this, we can build a Trie tree on all the words we want to find in the matrix. Then, we simultaneously move on both the matrix and Trie tree. Under the guidance of Trie tree, we only search the position that can compose a prefix of target words. Although in the worst case, the time complexity will still be O ( n 2 m 2 ) O(n^2m^2) O(n2m2), but in general cases, the time complexity will be about O ( ∑ w ∈ w o r d s Len ( w ) ) O( \sum_{w\in words}\text{Len}(w)) O(∑w∈wordsLen(w)) and the space complexity will be constantly O ( n × m + ∑ w ∈ w o r d s Len ( w ) ) O(n\times m+ \sum_{w\in words}\text{Len}(w)) O(n×m+∑w∈wordsLen(w)).

Code

py 复制代码
class Trie:
    def __init__(self):
        self.is_word = [False]
        self.tree = [{}]
        self.id_cnt = 0
        self.word_cnt = [0]
    
    def insert(self, word):
        node = 0
        self.word_cnt[0] += 1
        for c in word:
            if c not in self.tree[node]:
                self.id_cnt += 1
                self.tree[node][c] = self.id_cnt
                self.is_word.append(False)
                self.tree.append({})
                self.word_cnt.append(0)
            node = self.tree[node][c]
            self.word_cnt[node] += 1
        self.is_word[node] = True

    def remove(self, word):
        node = 0
        self.word_cnt[0] -= 1
        for c in word:
            if c not in self.tree[node]:
                return
            node = self.tree[node][c]
            if self.word_cnt[node] <= 0:
                return
            self.word_cnt[node] -= 1
        self.is_word[node] = False



class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = Trie()
        for word in words:
            trie.insert(word)
        ans = []
        vis = set()
        X = [ 1,-1, 0, 0]
        Y = [ 0, 0, 1,-1]
        def dfs(x, y, node, string):
            print(x, y, node, string)
            if trie.word_cnt[node] <= 0:
                return
            if trie.is_word[node]:
                ans.append(string)
                trie.remove(string)
            vis.add((x, y))
            for i in range(4):
                nxt_x = x + X[i]
                nxt_y = y + Y[i]
                if 0 <= nxt_x < len(board) and 0 <= nxt_y < len(board[0]) and (nxt_x, nxt_y) not in vis:
                    nxt_char = board[nxt_x][nxt_y]
                    if nxt_char in trie.tree[node]:
                        dfs(nxt_x, nxt_y, trie.tree[node][nxt_char], string+nxt_char)
            vis.remove((x,y))
            return False

        for i in range(len(board)):
            for j in range(len(board[0])):
                if board[i][j] in trie.tree[0]:
                    dfs(i, j, trie.tree[0][board[i][j]], board[i][j])
        return ans
        
相关推荐
算AI4 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh6 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之7 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓7 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf7 小时前
图论----拓扑排序
算法·图论
我要昵称干什么7 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ8 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl8 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦8 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku8 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯