[NeetCode 150] Search for Word II

Given a 2-D grid of characters board and a list of strings words, return all words that are present in the grid.

For a word to be present it must be possible to form the word with a path in the board with horizontally or vertically neighboring cells. The same cell may not be used more than once in a word.

Example 1:

复制代码
Input:
board = [
  ["a","b","c","d"],
  ["s","a","a","t"],
  ["a","c","k","e"],
  ["a","c","d","n"]
],
words = ["bat","cat","back","backend","stack"]

Output: ["cat","back","backend"]

Example 2:

复制代码
Input:
board = [
  ["x","o"],
  ["x","o"]
],
words = ["xoxo"]

Output: []

Constraints:

复制代码
1 <= board.length, board[i].length <= 10
board[i] consists only of lowercase English letter.
1 <= words.length <= 100
1 <= words[i].length <= 10

words[i] consists only of lowercase English letters.

All strings within words are distinct.

Solution

Compared with basic Search for Word, this problem involves multiple queries. For one query, we have to go through the whole matrix and apply DFS, which consume O ( n × m × Len ( w o r d ) ) O(n\times m\times \text{Len}(word)) O(n×m×Len(word)) time complexity. If we simply repeat this process on every query, the time complexity is O ( n × m × ∑ w ∈ w o r d s Len ( w ) ) O(n\times m\times \sum_{w\in words}\text{Len}(w)) O(n×m×∑w∈wordsLen(w)), which is too time-consuming.

In fact, we can go through the whole matrix and apply DFS at each position only once, because in just one going through, we can meet all possible words that can be produced by the matrix. There is no need to repeat it.

One possible solution is to record all strings while we go through the matrix, using a set or hash algorithm, but the number of all possible strings might be large and we only need few among them. The overall time and space complexity will be O ( n 2 m 2 ) O(n^2m^2) O(n2m2).

Actually, the DFS can be much more efficient if we search according to the given word list. To achieve this, we can build a Trie tree on all the words we want to find in the matrix. Then, we simultaneously move on both the matrix and Trie tree. Under the guidance of Trie tree, we only search the position that can compose a prefix of target words. Although in the worst case, the time complexity will still be O ( n 2 m 2 ) O(n^2m^2) O(n2m2), but in general cases, the time complexity will be about O ( ∑ w ∈ w o r d s Len ( w ) ) O( \sum_{w\in words}\text{Len}(w)) O(∑w∈wordsLen(w)) and the space complexity will be constantly O ( n × m + ∑ w ∈ w o r d s Len ( w ) ) O(n\times m+ \sum_{w\in words}\text{Len}(w)) O(n×m+∑w∈wordsLen(w)).

Code

py 复制代码
class Trie:
    def __init__(self):
        self.is_word = [False]
        self.tree = [{}]
        self.id_cnt = 0
        self.word_cnt = [0]
    
    def insert(self, word):
        node = 0
        self.word_cnt[0] += 1
        for c in word:
            if c not in self.tree[node]:
                self.id_cnt += 1
                self.tree[node][c] = self.id_cnt
                self.is_word.append(False)
                self.tree.append({})
                self.word_cnt.append(0)
            node = self.tree[node][c]
            self.word_cnt[node] += 1
        self.is_word[node] = True

    def remove(self, word):
        node = 0
        self.word_cnt[0] -= 1
        for c in word:
            if c not in self.tree[node]:
                return
            node = self.tree[node][c]
            if self.word_cnt[node] <= 0:
                return
            self.word_cnt[node] -= 1
        self.is_word[node] = False



class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        trie = Trie()
        for word in words:
            trie.insert(word)
        ans = []
        vis = set()
        X = [ 1,-1, 0, 0]
        Y = [ 0, 0, 1,-1]
        def dfs(x, y, node, string):
            print(x, y, node, string)
            if trie.word_cnt[node] <= 0:
                return
            if trie.is_word[node]:
                ans.append(string)
                trie.remove(string)
            vis.add((x, y))
            for i in range(4):
                nxt_x = x + X[i]
                nxt_y = y + Y[i]
                if 0 <= nxt_x < len(board) and 0 <= nxt_y < len(board[0]) and (nxt_x, nxt_y) not in vis:
                    nxt_char = board[nxt_x][nxt_y]
                    if nxt_char in trie.tree[node]:
                        dfs(nxt_x, nxt_y, trie.tree[node][nxt_char], string+nxt_char)
            vis.remove((x,y))
            return False

        for i in range(len(board)):
            for j in range(len(board[0])):
                if board[i][j] in trie.tree[0]:
                    dfs(i, j, trie.tree[0][board[i][j]], board[i][j])
        return ans
        
相关推荐
YGGP4 小时前
【Golang】LeetCode 64. 最小路径和
算法·leetcode
古城小栈6 小时前
Rust变量设计核心:默认不可变与mut显式可变的深层逻辑
算法·rust
电商API&Tina6 小时前
跨境电商 API 对接指南:亚马逊 + 速卖通接口调用全流程
大数据·服务器·数据库·python·算法·json·图搜索算法
LYFlied6 小时前
【每日算法】LeetCode 1143. 最长公共子序列
前端·算法·leetcode·职场和发展·动态规划
长安er7 小时前
LeetCode 20/155/394/739/84/42/单调栈核心原理与经典题型全解析
数据结构·算法·leetcode·动态规划·
MarkHD8 小时前
智能体在车联网中的应用:第28天 深度强化学习实战:从原理到实现——掌握近端策略优化(PPO)算法
算法
能源系统预测和优化研究8 小时前
【原创代码改进】考虑共享储能接入的工业园区多类型负荷需求响应经济运行研究
大数据·算法
yoke菜籽8 小时前
LeetCode——三指针
算法·leetcode·职场和发展
小高不明9 小时前
前缀和一维/二维-复习篇
开发语言·算法
bin91539 小时前
当AI优化搜索引擎算法:Go初级开发者的创意突围实战指南
人工智能·算法·搜索引擎·工具·ai工具