Yolo系列——yolo v3

文章目录

一、概述

YOLOv3(You Only Look Once version 3)是由Joseph Redmon等人在2018年推出的一款目标检测算法。作为YOLO系列的第三代版本,YOLOv3在保持实时性的基础上,进一步提高了检测准确性,特别是在小物体检测方面表现出色。它采用单阶段检测方法,将目标检测问题转化为回归问题,使用单个神经网络直接从完整图像预测边界框和类别概率,实现了端到端的快速目标检测。

二、网络结构

YOLOv3的网络结构主要包括骨干网络、特征金字塔网络(FPN)以及预测层。

  • 骨干网络:YOLOv3采用Darknet-53作为特征提取网络。Darknet-53是一个基于ResNet残差网络思想的深度学习模型,包含53个卷积层,每个卷积层后跟随批量归一化层和Leaky
    ReLU激活函数。这种结构使得网络在提取特征时更加高效,同时避免了过拟合的问题。Darknet-53去除了池化层,使用步长为2的卷积层进行特征图的降采样,有效避免了低层级特征的损失。
  • 特征金字塔网络(FPN):YOLOv3引入了FPN机制,以解决多尺度检测的问题。FPN在Darknet-53的输出上添加了几个额外的卷积层,形成了三个不同尺度的特征图。这使得网络能够更好地检测不同大小的目标。通过融合深层和浅层的特征,YOLOv3能够显著提高对小目标的检测能力。

三、模型改进

1.多尺度预测

YOLOv3在不同尺度上进行预测,每个尺度预测3种不同大小的边界框。这种多尺度预测的方法显著提高了YOLOv3对小目标的检测能力。同时,YOLOv3采用了多尺度Anchors策略,为每种Anchors设置了三种不同的大小,总共9种不同大小的Anchors,有助于网络预测不同大小的目标。

2.规模设计


3.分类器改进

YOLOv3使用了逻辑回归分类器代替softmax分类器,能够更好地处理多标签分类问题。这种分类器的改变使得模型可以同时预测多个类别,并且对于具有多个标签的目标也能进行准确的检测。

四、性能与应用

YOLOv3在速度和准确性之间取得了良好的平衡,适用于需要实时目标检测的应用场景。在Titan X GPU上,YOLOv3可以以30 FPS的速度处理416×416的图像,同时在COCO数据集上的mAP@0.5指标相比YOLOv2提高了2.7%。凭借其快速、准确的特点,YOLOv3在多个领域得到了广泛应用,如自动驾驶、安防监控、工业检测、医疗影像以及零售业等。

相关推荐
a1111111111ss13 小时前
FASFFhead
yolo
FL162386312917 小时前
自动驾驶场景驾驶员注意力安全行为睡驾分心驾驶疲劳驾驶检测数据集VOC+YOLO格式5370张6类别
人工智能·yolo·自动驾驶
Coding茶水间1 天前
基于深度学习的西红柿成熟度检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
YOULANSHENGMENG1 天前
YOLOV8_obb的C++的工程实现---2)yolov8_obb工程部署
yolo
Coding茶水间2 天前
基于深度学习的面部口罩检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
musk12122 天前
YOLOv8n模型微调全指南:从环境搭建到技能储备 (内容由 AI 生成)
人工智能·yolo
懷淰メ2 天前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的太阳能电池板缺陷检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt5·检测系统·deepseek·太阳能电池
lxmyzzs2 天前
【图像算法 - 36】医疗应用:基于 YOLOv12 与 OpenCV 的高精度脑肿瘤检测系统实现
python·深度学习·opencv·yolo·计算机视觉·脑肿瘤检测