我用Replicate训练了个纹身Flux AI LORA模型,分享下经验

我用Replicate训练了个纹身AI模型,分享下经验

起因

最近一直在研究AI辅助设计,正好我对纹身设计特别感兴趣。经过一段时间摸索,用Replicate平台训练了一个还不错的纹身设计模型。目前已经整合到了Hottattoo.AI平台上。

其实一开始我也在纠结要不要自己训练模型,毕竟网上现成的模型不少。但用了一段时间后发现,通用模型对纹身设计的理解还是差了点意思,特别是在一些细节的处理上。所以就想着,与其用别人的模型凑合,不如自己动手训练一个。

为什么要自己训练模型?

说实话,主要是这几点原因:

  1. **更懂纹身**:普通模型可能不太理解纹身的特殊要求,比如线条的流畅度、阴影的层次感

  2. **好调整**:自己的模型想怎么改就怎么改,不用受限于别人的设定

  3. **效果更好**:专门训练后,在纹身设计这块确实比通用模型强不少

  4. **其实很便宜**:训练一次才花了不到2美元,还挺划算

实操教程

要是你也想试试,我把步骤整理了一下:

第一步:准备工作

需要准备这些:

  • Replicate账号

  • 20-30张高质量的纹身图片

  • 2美元左右的训练费用

第二步:准备图片

  1. **收集图片**:
  • 挑选你喜欢的纹身风格

  • 图片要清晰

  • 最好风格统一一些

  1. **整理文件**:

```bash

建个文件夹放图片

mkdir training_data

打包

zip -r training-images.zip training_data/*

```

第三步:开始训练

可以用网页或者代码来训练:

```python

import replicate

建个新模型

model = replicate.models.create(

owner="你的用户名",

name="tattoo-style-lora",

visibility="public",

description="纹身设计模型"

)

开始训练

training = replicate.trainings.create(

version="ostris/flux-dev-lora-trainer:4ffd32160efd92e956d39c5338a9b8fbafca58e03f791f6d8011f3e20e8ea6fa",

input={

"input_images": open("training-images.zip", "rb"),

"steps": 1000,

"trigger_word": "TATTOO_STYLE" # 触发词,随便起个名

},

destination=f"{model.owner}/{model.name}"

)

```

第四步:测试效果

训练好后,可以试试这样的提示词:

```

A TATTOO_STYLE design of a dragon, black and grey style, detailed linework

```

一些小技巧

  1. **关于选图**
  • 尽量选风格接近的

  • 图片质量要好

  • 多找几个角度的样本

  1. **训练参数**
  • 学习率用默认的就行

  • 训练1000步差不多够了

  • 其他参数也都用默认的挺好

实际效果

如果想看看效果,可以直接去Hottattoo.AI试试。我们把这个模型放在上面了,输入你想要的纹身风格就能看到效果。

[Hot TattooI](https://hottattoo.ai/)

写在最后

说实话,现在AI辅助设计确实挺方便的,但还是得靠设计师来把控最终效果。这个模型也就是个辅助工具,帮忙提供一些灵感和参考。

有兴趣的朋友可以去体验免费的[AI Tattoo Generator](https://hottattoo.ai/)

,想自己训练的也可以按照这篇文章试试。遇到问题随时交流!

Fine-tune FLUX.1 with your own images - Replicate blog

相关推荐
万物皆字节11 小时前
【大模型系列】Windows系统上运行大语言模型方式
ai
jxandrew14 小时前
大模型驱动的业务自动化
ai·大模型·自动化编程
程序设计实验室14 小时前
LLM探索:离线部署Ollama和one-api服务
ai·llm
x-cmd15 小时前
[250217] x-cmd 发布 v0.5.3:新增 DeepSeek AI 模型支持及飞书/钉钉群机器人 Webhook 管理
ai·机器人·llm·钉钉·飞书·webhook·deepseek
只会一点java15 小时前
程序员转型AI:行业分析
ai
念九_ysl16 小时前
探索Hugging Face:开源AI社区的核心工具与应用实践
python·ai
bdawn17 小时前
构建高效智能对话前端:基于Ant Design X 的deepseek对话应用
ai·大模型·交互·对话·实时通信·deepseek·ant design x
子正19 小时前
yolo11s rknn无法detect的bugfix - step by step
yolo·机器学习·ai
Elastic 中国社区官方博客21 小时前
Elasticsearch:将 Ollama 与推理 API 结合使用
大数据·开发语言·人工智能·elasticsearch·搜索引擎·ai·全文检索
AlfredZhao1 天前
PPT革命!DeepSeek+Kimi=N小时工作5分钟完成?
ai·ppt·kimi·deekseek