我用Replicate训练了个纹身Flux AI LORA模型,分享下经验

我用Replicate训练了个纹身AI模型,分享下经验

起因

最近一直在研究AI辅助设计,正好我对纹身设计特别感兴趣。经过一段时间摸索,用Replicate平台训练了一个还不错的纹身设计模型。目前已经整合到了Hottattoo.AI平台上。

其实一开始我也在纠结要不要自己训练模型,毕竟网上现成的模型不少。但用了一段时间后发现,通用模型对纹身设计的理解还是差了点意思,特别是在一些细节的处理上。所以就想着,与其用别人的模型凑合,不如自己动手训练一个。

为什么要自己训练模型?

说实话,主要是这几点原因:

  1. **更懂纹身**:普通模型可能不太理解纹身的特殊要求,比如线条的流畅度、阴影的层次感

  2. **好调整**:自己的模型想怎么改就怎么改,不用受限于别人的设定

  3. **效果更好**:专门训练后,在纹身设计这块确实比通用模型强不少

  4. **其实很便宜**:训练一次才花了不到2美元,还挺划算

实操教程

要是你也想试试,我把步骤整理了一下:

第一步:准备工作

需要准备这些:

  • Replicate账号

  • 20-30张高质量的纹身图片

  • 2美元左右的训练费用

第二步:准备图片

  1. **收集图片**:
  • 挑选你喜欢的纹身风格

  • 图片要清晰

  • 最好风格统一一些

  1. **整理文件**:

```bash

建个文件夹放图片

mkdir training_data

打包

zip -r training-images.zip training_data/*

```

第三步:开始训练

可以用网页或者代码来训练:

```python

import replicate

建个新模型

model = replicate.models.create(

owner="你的用户名",

name="tattoo-style-lora",

visibility="public",

description="纹身设计模型"

)

开始训练

training = replicate.trainings.create(

version="ostris/flux-dev-lora-trainer:4ffd32160efd92e956d39c5338a9b8fbafca58e03f791f6d8011f3e20e8ea6fa",

input={

"input_images": open("training-images.zip", "rb"),

"steps": 1000,

"trigger_word": "TATTOO_STYLE" # 触发词,随便起个名

},

destination=f"{model.owner}/{model.name}"

)

```

第四步:测试效果

训练好后,可以试试这样的提示词:

```

A TATTOO_STYLE design of a dragon, black and grey style, detailed linework

```

一些小技巧

  1. **关于选图**
  • 尽量选风格接近的

  • 图片质量要好

  • 多找几个角度的样本

  1. **训练参数**
  • 学习率用默认的就行

  • 训练1000步差不多够了

  • 其他参数也都用默认的挺好

实际效果

如果想看看效果,可以直接去Hottattoo.AI试试。我们把这个模型放在上面了,输入你想要的纹身风格就能看到效果。

Hot TattooI\](https://hottattoo.ai/) ![](https://img2024.cnblogs.com/blog/3340171/202410/3340171-20241029181442346-1057533166.png) ![](https://img2024.cnblogs.com/blog/3340171/202410/3340171-20241029181503088-527978087.png) ## 写在最后 说实话,现在AI辅助设计确实挺方便的,但还是得靠设计师来把控最终效果。这个模型也就是个辅助工具,帮忙提供一些灵感和参考。 有兴趣的朋友可以去体验免费的\[AI Tattoo Generator\](https://hottattoo.ai/) ,想自己训练的也可以按照这篇文章试试。遇到问题随时交流! [Fine-tune FLUX.1 with your own images - Replicate blog](https://replicate.com/blog/fine-tune-flux)

相关推荐
ejinxian7 小时前
AI Agents 2025年十大战略科技趋势
人工智能·ai·ai agents
东方不败之鸭梨的测试笔记17 小时前
智能测试用例生成工具设计
人工智能·ai·langchain
意法半导体STM321 天前
STM32N6引入NPU,为边缘AI插上“隐形的翅膀”
单片机·ai·npu·st·stm32n6·边缘人工智能
老艾的AI世界1 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装
javgo.cn1 天前
Spring AI Alibaba - 聊天机器人快速上手
人工智能·ai·机器人
ciku1 天前
AI大模型配置项
ai
m0_603888712 天前
Stable Diffusion Models are Secretly Good at Visual In-Context Learning
人工智能·ai·stable diffusion·论文速览
CF5242 天前
深入解析Prompt缓存机制:原理、优化与实践经验
ai
ai绘画-安安妮2 天前
零基础学LangChain:核心概念与基础组件解析
人工智能·学习·ai·程序员·langchain·大模型·转行
MicrosoftReactor2 天前
技术速递|通过 GitHub Models 在 Actions 中实现项目自动化
ai·自动化·github·copilot