Paimon lookup store 实现

Lookup Store 主要用于 Paimon 中的 Lookup Compaction 以及 Lookup join 的场景. 会将远程的列存文件在本地转化为 KV 查找的格式.

Hash

https://github.com/linkedin/PalDB

Sort

https://github.com/dain/leveldb
https://github.com/apache/paimon/pull/3770

整体文件结构:

相比于 Hash file 的优势

  • 一次写入, 避免了文件merge
  • 顺序写入, 保持原先的 key 的顺序, 后续如果按照 key 的顺序查找, 可提升缓存效率

SortLookupStoreWriter

SortLookupStoreWriter#put

put

java 复制代码
@Override
public void put(byte[] key, byte[] value) throws IOException {
	dataBlockWriter.add(key, value);
	if (bloomFilter != null) {
		bloomFilter.addHash(MurmurHashUtils.hashBytes(key));
	}

	lastKey = key;

	// 当BlockWriter写入达到一定阈值, 默认是 cache-page-size=64kb.
	if (dataBlockWriter.memory() > blockSize) {
		flush();
	}

	recordCount++;
}

flush

java 复制代码
private void flush() throws IOException {  
    if (dataBlockWriter.size() == 0) {  
        return;  
    }  
	// 将data block写入数据文件, 并记录对应的position和长度
    BlockHandle blockHandle = writeBlock(dataBlockWriter);  
    MemorySlice handleEncoding = writeBlockHandle(blockHandle);
    // 将BlockHandle 写入index writer, 这也通过是一个BlockWriter写的
    indexBlockWriter.add(lastKey, handleEncoding.copyBytes());  
}

writeBlock

java 复制代码
private BlockHandle writeBlock(BlockWriter blockWriter) throws IOException {
	// close the block
	// 获取block的完整数组, 此时blockWriter中的数组并不会被释放, 而是会继续复用
	MemorySlice block = blockWriter.finish();

	totalUncompressedSize += block.length();

	// attempt to compress the block
	BlockCompressionType blockCompressionType = BlockCompressionType.NONE;
	if (blockCompressor != null) {
		int maxCompressedSize = blockCompressor.getMaxCompressedSize(block.length());
		byte[] compressed = allocateReuseBytes(maxCompressedSize + 5);
		int offset = encodeInt(compressed, 0, block.length());
		int compressedSize =
				offset
						+ blockCompressor.compress(
								block.getHeapMemory(),
								block.offset(),
								block.length(),
								compressed,
								offset);

		// Don't use the compressed data if compressed less than 12.5%,
		if (compressedSize < block.length() - (block.length() / 8)) {
			block = new MemorySlice(MemorySegment.wrap(compressed), 0, compressedSize);
			blockCompressionType = this.compressionType;
		}
	}

	totalCompressedSize += block.length();

	// create block trailer
	// 每一块block会有一个trailer, 记录压缩类型和crc32校验码
	BlockTrailer blockTrailer =
			new BlockTrailer(blockCompressionType, crc32c(block, blockCompressionType));
	MemorySlice trailer = BlockTrailer.writeBlockTrailer(blockTrailer);

	// create a handle to this block
	// BlockHandle 记录了每个block的其实position和长度
	BlockHandle blockHandle = new BlockHandle(position, block.length());

	// write data
	// 将数据追加写入磁盘文件
	writeSlice(block);

	// write trailer: 5 bytes
	// 写出trailer
	writeSlice(trailer);

	// clean up state
	blockWriter.reset();

	return blockHandle;
}

close

java 复制代码
public LookupStoreFactory.Context close() throws IOException {
	// flush current data block
	flush();

	LOG.info("Number of record: {}", recordCount);

	// write bloom filter
	@Nullable BloomFilterHandle bloomFilterHandle = null;
	if (bloomFilter != null) {
		MemorySegment buffer = bloomFilter.getBuffer();
		bloomFilterHandle =
				new BloomFilterHandle(position, buffer.size(), bloomFilter.expectedEntries());
		writeSlice(MemorySlice.wrap(buffer));
		LOG.info("Bloom filter size: {} bytes", bloomFilter.getBuffer().size());
	}

	// write index block
	// 将index数据写出至文件
	BlockHandle indexBlockHandle = writeBlock(indexBlockWriter);

	// write footer
	// Footer 记录bloomfiler + index
	Footer footer = new Footer(bloomFilterHandle, indexBlockHandle);
	MemorySlice footerEncoding = Footer.writeFooter(footer);
	writeSlice(footerEncoding);

	// 最后关闭文件
	// close file
	fileOutputStream.close();

	LOG.info("totalUncompressedSize: {}", MemorySize.ofBytes(totalUncompressedSize));
	LOG.info("totalCompressedSize: {}", MemorySize.ofBytes(totalCompressedSize));
	return new SortContext(position);
}

BlockWriter

add

java 复制代码
public void add(byte[] key, byte[] value) {
	int startPosition = block.size();
	// 写入key长度
	block.writeVarLenInt(key.length);
	// 写入key
	block.writeBytes(key);
	// 写入value长度
	block.writeVarLenInt(value.length);
	// 写入value
	block.writeBytes(value);
	int endPosition = block.size();

	// 使用一个int数组记录每个KV pair的起始位置作为索引
	positions.add(startPosition);
	// 是否对齐. 是否对齐取决于每个KV对的长度是否一样
	if (aligned) {
		int currentSize = endPosition - startPosition;
		if (alignedSize == 0) {
			alignedSize = currentSize;
		} else {
			aligned = alignedSize == currentSize;
		}
	}
}
  • 这里的 block 对应于一块可扩容的 MemorySegment, 也就是 byte[] , 当写入长度超过当前数组的长度时, 就会扩容

finish

java 复制代码
public MemorySlice finish() throws IOException {
	if (positions.isEmpty()) {
		throw new IllegalStateException();
	}
	// 当通过BlockWriter写出的数据长度都是对齐的时, 就不需要记录各个Position的index了, 只需要记录一个对齐长度, 读取时自己可以计算.
	if (aligned) {
		block.writeInt(alignedSize);
	} else {
		for (int i = 0; i < positions.size(); i++) {
			block.writeInt(positions.get(i));
		}
		block.writeInt(positions.size());
	}
	block.writeByte(aligned ? ALIGNED.toByte() : UNALIGNED.toByte());
	return block.toSlice();
}

小结

整个文件的写出过程非常简单, 就是按 block 写出, 并且记录每个 block 的位置, 作为 index.

SortLookupStoreReader

读取的过程, 主要就是为了查找 key 是否存在, 以及对应的 value 或者对应的行号.

java 复制代码
public byte[] lookup(byte[] key) throws IOException {
	// 先通过bloomfilter提前进行判断
	if (bloomFilter != null && !bloomFilter.testHash(MurmurHashUtils.hashBytes(key))) {
		return null;
	}

	MemorySlice keySlice = MemorySlice.wrap(key);
	// seek the index to the block containing the key
	indexBlockIterator.seekTo(keySlice);

	// if indexIterator does not have a next, it means the key does not exist in this iterator
	if (indexBlockIterator.hasNext()) {
		// seek the current iterator to the key
		// 根据从index block中读取到的key value的位置(BlockHandle), 读取对应的value block
		BlockIterator current = getNextBlock();
		// 在value的iterator中再次二分查找寻找对应block中是否存在match的key, 如果存在则返回对应的数据
		if (current.seekTo(keySlice)) {
			return current.next().getValue().copyBytes();
		}
	}
	return null;
}
  • 查找一次 key 会经历两次二分查找(index + value).

BlockReader

java 复制代码
// 从block创建一个iterator
public BlockIterator iterator() {
	BlockAlignedType alignedType =
			BlockAlignedType.fromByte(block.readByte(block.length() - 1));
	int intValue = block.readInt(block.length() - 5);
	if (alignedType == ALIGNED) {
		return new AlignedIterator(block.slice(0, block.length() - 5), intValue, comparator);
	} else {
		int indexLength = intValue * 4;
		int indexOffset = block.length() - 5 - indexLength;
		MemorySlice data = block.slice(0, indexOffset);
		MemorySlice index = block.slice(indexOffset, indexLength);
		return new UnalignedIterator(data, index, comparator);
	}
}

SliceCompartor

这里面传入了 keyComparator, 用于进行 key 的比较. 用于在 index 中进行二分查找. 这里的比较并不是直接基于原始的数据, 而是基于 MemorySlice 进行排序.

比较的过程会将 key 的各个字段从 MemorySegment 中读取反序列化出来, cast 成 Comparable 进行比较.

java 复制代码
public SliceComparator(RowType rowType) {
	int bitSetInBytes = calculateBitSetInBytes(rowType.getFieldCount());
	this.reader1 = new RowReader(bitSetInBytes);
	this.reader2 = new RowReader(bitSetInBytes);
	this.fieldReaders = new FieldReader[rowType.getFieldCount()];
	for (int i = 0; i < rowType.getFieldCount(); i++) {
		fieldReaders[i] = createFieldReader(rowType.getTypeAt(i));
	}
}

@Override
public int compare(MemorySlice slice1, MemorySlice slice2) {
	reader1.pointTo(slice1.segment(), slice1.offset());
	reader2.pointTo(slice2.segment(), slice2.offset());
	for (int i = 0; i < fieldReaders.length; i++) {
		boolean isNull1 = reader1.isNullAt(i);
		boolean isNull2 = reader2.isNullAt(i);
		if (!isNull1 || !isNull2) {
			if (isNull1) {
				return -1;
			} else if (isNull2) {
				return 1;
			} else {
				FieldReader fieldReader = fieldReaders[i];
				Object o1 = fieldReader.readField(reader1, i);
				Object o2 = fieldReader.readField(reader2, i);
				@SuppressWarnings({"unchecked", "rawtypes"})
				int comp = ((Comparable) o1).compareTo(o2);
				if (comp != 0) {
					return comp;
				}
			}
		}
	}
	return 0;
}

查找的实现就是二分查找的过程, 因为写入的 key 是有序写入的.

java 复制代码
public boolean seekTo(MemorySlice targetKey) {
	int left = 0;
	int right = recordCount - 1;

	while (left <= right) {
		int mid = left + (right - left) / 2;

		// 对于aligned iterator, 就直接seek record * recordSize
		// 对于unaligned iterator, 就根据writer写入的索引表来跳转
		seekTo(mid);
		// 读取一条key value pair
		BlockEntry midEntry = readEntry();
		int compare = comparator.compare(midEntry.getKey(), targetKey);

		if (compare == 0) {
			polled = midEntry;
			return true;
		} else if (compare > 0) {
			polled = midEntry;
			right = mid - 1;
		} else {
			left = mid + 1;
		}
	}

	return false;
}

小结

查找过程

  • 先过一遍 bloom filter
  • index 索引查找对应 key 的 block handle
  • 根据第二步的 handle, 读取对应的 block, 在 block 中查找对应的 key value.
相关推荐
努力的小雨14 天前
深入解析 Spring AI 系列:剖析OpenAI接口接入组件
经验分享·源码分析·ai智能
SchneeDuan1 个月前
从源码分析swift GCD_DispatchGroup
ios·swift·源码分析·gcd
沐知全栈开发2 个月前
基于PyTorch的DDSP设计源码及C/C++实现分析
c++·pytorch·源码分析·ddsp·c/c++实现
郁大锤2 个月前
linux alsa-lib snd_pcm_open函数源码分析(四)
linux·音频·pcm·源码分析·驱动·alsa
liangsheng_g2 个月前
基于Kafka2.1解读Consumer原理
kafka·consumer·源码分析
PersistJiao2 个月前
Spark RDD中常用聚合算子源码层面的对比分析
spark·源码分析·rdd·聚合算子
努力的小雨3 个月前
微服务架构——不可或缺的注册中心
分布式·源码分析
liangsheng_g3 个月前
基于Kafka2.1解读Producer原理
java·kafka·源码分析