ElasticSearch - Bucket Selector使用指南

文章目录

  • 官方文档
  • [Bucket Selector](#Bucket Selector)
    • [1. 定义](#1. 定义)
    • [2. 工作原理](#2. 工作原理)
    • [3. 使用场景与示例](#3. 使用场景与示例)
    • [4. 注意事项](#4. 注意事项)
    • [5. 总结](#5. 总结)

官方文档

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html


Bucket Selector

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-pipeline-bucket-selector-aggregation.html



1. 定义

bucket_selector 是 ElasticSearch 中的一种聚合管道(Pipeline Aggregation),用于对已生成的聚合桶(bucket)进行后处理。它允许根据聚合结果动态过滤和选择桶,从而帮助用户更精确地控制查询结果。

2. 工作原理

  • 输入bucket_selector 接受一个或多个聚合桶作为输入。
  • 脚本:通过脚本计算每个桶的条件,例如根据聚合值判断是否保留该桶。
  • 输出:返回符合条件的桶,其余的桶将被过滤掉。
  1. buckets_path:用于指定脚本中的变量和对应的聚合路径。例如,可以定义一个路径映射,将某个子聚合的结果(如总和或计数)传递给变量。
  2. script :通过脚本来判断某个桶是否保留。脚本语言通常为Painless,脚本必须返回一个布尔值,true表示保留该桶,false表示过滤掉

3. 使用场景与示例

使用场景

  • 当需要根据聚合的统计数据来决定显示哪些结果时。
  • 可以在进行多层聚合时,优化最终返回的桶。

官方案例

以下是一个实际应用:假设想筛选出每月销售额超过200的结果。可以使用如下DSL查询:

json 复制代码
PUT /sales
{
  "mappings": {
    "properties": {
      "date": {
        "type": "date"
      },
      "price": {
        "type": "double"
      }
    }
  }
}


POST /sales/_bulk
{ "index": { "_id": "1" } }
{ "date": "2023-01-01", "price": 100.0 }
{ "index": { "_id": "2" } }
{ "date": "2023-01-15", "price": 150.0 }
{ "index": { "_id": "3" } }
{ "date": "2023-02-01", "price": 300.0 }
{ "index": { "_id": "4" } }
{ "date": "2023-02-10", "price": 50.0 }
{ "index": { "_id": "5" } }
{ "date": "2023-03-01", "price": 400.0 }
{ "index": { "_id": "6" } }
{ "date": "2023-03-15", "price": 250.0 }
{ "index": { "_id": "7" } }
{ "date": "2023-04-01", "price": 350.0 }
{ "index": { "_id": "8" } }
{ "date": "2023-04-10", "price": 200.0 }
{ "index": { "_id": "9" } }
{ "date": "2023-05-01", "price": 500.0 }
{ "index": { "_id": "10" } }
{ "date": "2023-05-15", "price": 300.0 }




POST /sales/_search
{
  "size": 0,
  "aggs": {
    "sales_per_month": {
      "date_histogram": {
        "field": "date",
        "calendar_interval": "month"
      },
      "aggs": {
        "total_sales": {
          "sum": {
            "field": "price"
          }
        },
        "sales_bucket_filter": {
          "bucket_selector": {
            "buckets_path": {
              "totalSales": "total_sales"
            },
            "script": "params.totalSales > 600"
          }
        }
      }
    }
  }
}

这个DSL是一个用于Elasticsearch的聚合查询,目的是统计每个月的销售总额,并筛选出销售总额超过600的月份。下

  1. size: 0
  • 作用:表示在查询结果中不返回文档本身,只返回聚合结果。这通常用于只关心聚合结果而不需要实际数据时。
  1. aggs
  • 作用:定义聚合操作的容器。这里的聚合是为了对销售数据进行统计。
  1. sales_per_month
  • 类型date_histogram
    • 功能:将数据按照时间段(这里是月份)进行分组。
    • 参数
      • field: 指定用于分组的日期字段,这里是 date
      • calendar_interval: 设置时间间隔,这里是按月进行分组。
  1. total_sales
  • 类型sum
    • 功能:对每个月的销售额进行求和。
    • 参数
      • field: 指定需要求和的字段,这里是 price。每个月的销售总额将被计算并存储在这个聚合中。
  1. sales_bucket_filter
  • 类型bucket_selector
    • 功能:用于根据特定条件过滤桶(即月份)。
    • 参数
      • buckets_path: 定义如何访问其他聚合的结果,这里指定了 totalSales 对应于 total_sales 聚合。
      • script: 使用Painless脚本来判断是否保留桶。这里的条件是 params.totalSales > 600,这意味着只有当某个月的总销售额超过600时,该月份的桶才会被保留。

总结

这个DSL的整体作用是:

  • 按月份对销售数据进行分组。
  • 计算每个月的销售总额。
  • 只保留销售总额超过600的月份结果。

最终,这将返回一个包含销售额超过600的月份的聚合结果,方便进行数据分析。


示例2

假设有一个日志索引,包含用户活动的文档,我们想要按用户分组并计算每个用户的活动次数,但只希望返回活动次数超过10的用户。

json 复制代码
 
PUT /user_activity
{
  "mappings": {
    "properties": {
      "user_id": {
        "type": "keyword"
      },
      "activity": {
        "type": "keyword"
      },
      "timestamp": {
        "type": "date"
      }
    }
  }
}



POST /user_activity/_bulk
{ "index": { "_id": "1" } }
{ "user_id": "user1", "activity": "login", "timestamp": "2024-10-01T10:00:00Z" }
{ "index": { "_id": "2" } }
{ "user_id": "user1", "activity": "view_page", "timestamp": "2024-10-01T10:05:00Z" }
{ "index": { "_id": "3" } }
{ "user_id": "user1", "activity": "logout", "timestamp": "2024-10-01T10:10:00Z" }
{ "index": { "_id": "4" } }
{ "user_id": "user1", "activity": "login", "timestamp": "2024-10-01T11:00:00Z" }
{ "index": { "_id": "5" } }
{ "user_id": "user1", "activity": "view_page", "timestamp": "2024-10-01T11:05:00Z" }
{ "index": { "_id": "6" } }
{ "user_id": "user1", "activity": "logout", "timestamp": "2024-10-01T11:10:00Z" }
{ "index": { "_id": "7" } }
{ "user_id": "user2", "activity": "login", "timestamp": "2024-10-01T12:00:00Z" }
{ "index": { "_id": "8" } }
{ "user_id": "user2", "activity": "upload_file", "timestamp": "2024-10-01T12:15:00Z" }
{ "index": { "_id": "9" } }
{ "user_id": "user3", "activity": "logout", "timestamp": "2024-10-01T12:30:00Z" }
{ "index": { "_id": "10" } }
{ "user_id": "user4", "activity": "login", "timestamp": "2024-10-01T13:00:00Z" }
{ "index": { "_id": "11" } }
{ "user_id": "user4", "activity": "logout", "timestamp": "2024-10-01T13:05:00Z" }
{ "index": { "_id": "12" } }
{ "user_id": "user5", "activity": "login", "timestamp": "2024-10-01T14:00:00Z" }
{ "index": { "_id": "13" } }
{ "user_id": "user5", "activity": "view_page", "timestamp": "2024-10-01T14:10:00Z" }
{ "index": { "_id": "14" } }
{ "user_id": "user5", "activity": "logout", "timestamp": "2024-10-01T14:15:00Z" }
{ "index": { "_id": "15" } }
{ "user_id": "user6", "activity": "login", "timestamp": "2024-10-01T15:00:00Z" }
{ "index": { "_id": "16" } }
{ "user_id": "user6", "activity": "view_page", "timestamp": "2024-10-01T15:05:00Z" }
{ "index": { "_id": "17" } }
{ "user_id": "user6", "activity": "logout", "timestamp": "2024-10-01T15:10:00Z" }
{ "index": { "_id": "18" } }
{ "user_id": "user7", "activity": "login", "timestamp": "2024-10-01T16:00:00Z" }
{ "index": { "_id": "19" } }
{ "user_id": "user7", "activity": "upload_file", "timestamp": "2024-10-01T16:05:00Z" }
{ "index": { "_id": "20" } }
{ "user_id": "user7", "activity": "logout", "timestamp": "2024-10-01T16:10:00Z" }
{ "index": { "_id": "21" } }
{ "user_id": "user8", "activity": "login", "timestamp": "2024-10-01T17:00:00Z" }
{ "index": { "_id": "22" } }
{ "user_id": "user8", "activity": "view_page", "timestamp": "2024-10-01T17:05:00Z" }
{ "index": { "_id": "23" } }
{ "user_id": "user8", "activity": "logout", "timestamp": "2024-10-01T17:10:00Z" }
{ "index": { "_id": "24" } }
{ "user_id": "user9", "activity": "login", "timestamp": "2024-10-01T18:00:00Z" }
{ "index": { "_id": "25" } }
{ "user_id": "user9", "activity": "view_page", "timestamp": "2024-10-01T18:05:00Z" }
{ "index": { "_id": "26" } }
{ "user_id": "user9", "activity": "logout", "timestamp": "2024-10-01T18:10:00Z" }
{ "index": { "_id": "27" } }
{ "user_id": "user10", "activity": "login", "timestamp": "2024-10-01T19:00:00Z" }
{ "index": { "_id": "28" } }
{ "user_id": "user10", "activity": "view_page", "timestamp": "2024-10-01T19:05:00Z" }
{ "index": { "_id": "29" } }
{ "user_id": "user10", "activity": "logout", "timestamp": "2024-10-01T19:10:00Z" }
{ "index": { "_id": "30" } }
{ "user_id": "user11", "activity": "login", "timestamp": "2024-10-01T20:00:00Z" }
{ "index": { "_id": "31" } }
{ "user_id": "user11", "activity": "view_page", "timestamp": "2024-10-01T20:05:00Z" }
{ "index": { "_id": "32" } }
{ "user_id": "user11", "activity": "logout", "timestamp": "2024-10-01T20:10:00Z" }
{ "index": { "_id": "33" } }
{ "user_id": "user12", "activity": "login", "timestamp": "2024-10-01T21:00:00Z" }
{ "index": { "_id": "34" } }
{ "user_id": "user12", "activity": "upload_file", "timestamp": "2024-10-01T21:05:00Z" }
{ "index": { "_id": "35" } }
{ "user_id": "user12", "activity": "logout", "timestamp": "2024-10-01T21:10:00Z" }
{ "index": { "_id": "36" } }
{ "user_id": "user13", "activity": "login", "timestamp": "2024-10-01T22:00:00Z" }
{ "index": { "_id": "37" } }
{ "user_id": "user13", "activity": "view_page", "timestamp": "2024-10-01T22:05:00Z" }
{ "index": { "_id": "38" } }
{ "user_id": "user13", "activity": "logout", "timestamp": "2024-10-01T22:10:00Z" }
{ "index": { "_id": "39" } }
{ "user_id": "user14", "activity": "login", "timestamp": "2024-10-01T23:00:00Z" }
{ "index": { "_id": "40" } }
{ "user_id": "user14", "activity": "view_page", "timestamp": "2024-10-01T23:05:00Z" }
{ "index": { "_id": "41" } }
{ "user_id": "user14", "activity": "logout", "timestamp": "2024-10-01T23:10:00Z" }
{ "index": { "_id": "42" } }
{ "user_id": "user15", "activity": "login", "timestamp": "2024-10-02T00:00:00Z" }
{ "index": { "_id": "43" } }
{ "user_id": "user15", "activity": "upload_file", "timestamp": "2024-10-02T00:05:00Z" }
{ "index": { "_id": "44" } }
{ "user_id": "user15", "activity": "logout", "timestamp": "2024-10-02T00:10:00Z" }
{ "index": { "_id": "45" } }
{ "user_id": "user16", "activity": "login", "timestamp": "2024-10-02T01:00:00Z" }
{ "index": { "_id": "46" } }
{ "user_id": "user16", "activity": "view_page", "timestamp": "2024-10-02T01:05:00Z" }
{ "index": { "_id": "47" } }
{ "user_id": "user16", "activity": "logout", "timestamp": "2024-10-02T01:10:00Z" }
{ "index": { "_id": "48" } }
{ "user_id": "user17", "activity": "login", "timestamp": "2024-10-02T02:00:00Z" }
{ "index": { "_id": "49" } }
{ "user_id": "user17", "activity": "upload_file", "timestamp": "2024-10-02T02:05:00Z" }
{ "index": { "_id": "50" } }
{ "user_id": "user17", "activity": "logout", "timestamp": "2024-10-02T02:10:00Z" }




POST /user_activity/_search
{
  "size": 0,
  "aggs": {
    "users": {
      "terms": {
        "field": "user_id"
      },
      "aggs": {
        "activity_count": {
          "value_count": {
            "field": "activity"
          }
        },
        "filtered_users": {
          "bucket_selector": {
            "buckets_path": {
              "count": "activity_count"
            },
            "script": "params.count > 5"
          }
        }
      }
    }
  }
}
  1. 总体结构
  • 请求类型POST /user_activity/_search 这表示我们正在对 user_activity 索引执行搜索请求。
  • size :设置为 0,表示不返回文档,仅返回聚合结果。
  1. 聚合部分 (aggs)
  • users :这是一个聚合的名称,用于聚合结果的分组。
    • terms :这是一个聚合类型,表示我们希望按 user_id 字段对文档进行分组。每个不同的 user_id 将生成一个桶。
  1. 嵌套聚合
  • activity_count

    • value_count :这是另一个聚合,计算每个用户桶中 activity 字段的文档数量。换句话说,它统计每个用户的活动次数。
  • filtered_users

    • bucket_selector:这是一个聚合管道,允许对已生成的桶进行后处理。
    • buckets_path :这是一个路径定义,指定了输入到 bucket_selector 的聚合结果。在这里,count 被定义为指向 activity_count 聚合的结果。
    • script:这是一个条件语句,用于筛选桶。在这里,脚本判断活动次数是否大于5。只有符合这个条件的用户桶才会被保留。

总结

该DSL的主要功能是:

  1. user_id 聚合用户活动数据。
  2. 计算每个用户的活动数量。
  3. 仅筛选出活动次数大于5的用户。

4. 注意事项

  • 由于bucket_selector是在所有聚合完成后执行的,它不能减少执行时间。
  • 在一些复杂场景中(如使用cardinality聚合),需要确保将bucket_selector放置在正确的父级聚合中,否则会出现不兼容的错误

5. 总结

bucket_selector 是 ElasticSearch 中用于后处理聚合桶的强大工具,可以根据聚合计算的结果动态地筛选出感兴趣的桶。它在数据分析和可视化中非常有用,可以帮助用户精准控制查询结果。

相关推荐
jwolf22 小时前
Elasticsearch向量搜索:从语义搜索到图搜图只有一步之遥
elasticsearch·搜索引擎·ai
你可以叫我仔哥呀3 小时前
ElasticSearch学习笔记三:基础操作(一)
笔记·学习·elasticsearch
hummhumm3 小时前
第 25 章 - Golang 项目结构
java·开发语言·前端·后端·python·elasticsearch·golang
java1234_小锋7 小时前
Elasticsearch中的节点(比如共20个),其中的10个选了一个master,另外10个选了另一个master,怎么办?
大数据·elasticsearch·jenkins
Elastic 中国社区官方博客7 小时前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
我的运维人生7 小时前
Elasticsearch实战应用:构建高效搜索与分析平台
大数据·elasticsearch·jenkins·运维开发·技术共享
Mephisto.java11 小时前
【大数据学习 | Spark】Spark的改变分区的算子
大数据·elasticsearch·oracle·spark·kafka·memcache
mqiqe11 小时前
Elasticsearch 分词器
python·elasticsearch
小马爱打代码11 小时前
Elasticsearch简介与实操
大数据·elasticsearch·搜索引擎
java1234_小锋20 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎