神经网络的常用layer

卷积层

nn.Conv1d

池化层

下采样层主要是使用pooling层的操作技术来实现的,目的主要是保存有效的信息,降低特征的维度,来避免过拟合。对一个M*N的图像,进行s倍的下采样,对长和宽来说各要缩小s倍

全连接层

nn.Linear

(70 封私信 / 85 条消息) 全连接层的作用是什么? - 知乎 (zhihu.com)

复制代码
torch.nn.Linear(in_features, # 输入的神经元个数
           out_features, # 输出神经元个数
           bias=True # 是否包含偏置
           )
nn.Linear(2, 1) # 输入特征数为2,输出特征数为1

Pytorch nn.Linear的基本用法与原理详解_iioSnail的博客-CSDN博客

激活层

nn.relu()

本质是max(0, input),对输入数据进行逐元素操作,如果输入的元素值小于0,则输出为0;否则,输出等于输入。

nn.BatchNormid

相关推荐
微软技术分享几秒前
Windows 环境下 llama.cpp 编译 + Qwen 模型本地部署全指南
人工智能
2501_945318498 分钟前
CAIE证书是否可查、可验证?
人工智能
weixin_416660079 分钟前
技术分析:豆包生成带公式文案导出Word乱码的底层机理
人工智能·word·豆包
爱吃泡芙的小白白14 分钟前
深入浅出:卷积神经网络(CNN)池化层全解析——从MaxPool到前沿发展
人工智能·神经网络·cnn·池化层·最大值池化·平均值池化
jigsaw_zyx19 分钟前
提示词工程
人工智能·算法
jdyzzy23 分钟前
什么是 JIT 精益生产模式?它与传统的生产管控方式有何不同?
java·大数据·人工智能·jit
LittroInno25 分钟前
TVMS视频管理平台 —— 多种目标跟踪模式
人工智能·计算机视觉·目标跟踪
查无此人byebye31 分钟前
突破性图像分词技术TiTok:32个Token实现高效图像重建与生成
人工智能
Niuguangshuo31 分钟前
DALL-E 2:从CLIP潜变量到高质量图像生成的突破
人工智能·深度学习·transformer