神经网络的常用layer

卷积层

nn.Conv1d

池化层

下采样层主要是使用pooling层的操作技术来实现的,目的主要是保存有效的信息,降低特征的维度,来避免过拟合。对一个M*N的图像,进行s倍的下采样,对长和宽来说各要缩小s倍

全连接层

nn.Linear

(70 封私信 / 85 条消息) 全连接层的作用是什么? - 知乎 (zhihu.com)

复制代码
torch.nn.Linear(in_features, # 输入的神经元个数
           out_features, # 输出神经元个数
           bias=True # 是否包含偏置
           )
nn.Linear(2, 1) # 输入特征数为2,输出特征数为1

Pytorch nn.Linear的基本用法与原理详解_iioSnail的博客-CSDN博客

激活层

nn.relu()

本质是max(0, input),对输入数据进行逐元素操作,如果输入的元素值小于0,则输出为0;否则,输出等于输入。

nn.BatchNormid

相关推荐
لا معنى له16 分钟前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI2 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
小a杰.3 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight4 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha4 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir4 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王5 小时前
COCO 数据集
人工智能·机器学习
AI营销实验室6 小时前
原圈科技AI CRM系统赋能销售新未来,行业应用与创新点评
人工智能·科技
爱笑的眼睛116 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
tap.AI6 小时前
RAG系列(一) 架构基础与原理
人工智能·架构