sklearn 分类变量转换

sklearn 分类变量转换

在用进行机器学习模型建立时,我们拿到的数据总是包含有分类变量和数值型变量,但是sklearn模型要求的输入都是数值型的。因此,在构建模型之前,我们需要对分类变量进行转换。

分类变量的类型

分类变量一般分为无序分类变量和有序分类变量,对应的,在sklearn中,我们需要使用OnehotEncoder和OrdinalEncoder

python 复制代码
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
X = [['Male', 'US'], ['Female', 'CN'], ['Female', 'UK']]
enc.fit(X)
python 复制代码
from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder()
X = [['Male', 1], ['Female', 3], ['Female', 2]]
enc.fit(X)

复杂情况

有时我们的数据变量情况很复杂,是多种变量类型的组合,如:

无序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.compose import make_column_selector
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'rating': [5, 3, 4, 5]})  
ct = make_column_transformer(
      (StandardScaler(),
       make_column_selector(dtype_include=np.number)),  # rating,数值型变量,用StandardScaler处理
      (OneHotEncoder(),
       make_column_selector(dtype_include=object)))  # city,无序的分类变量,用OneHotEncoder处理
ct.fit_transform(X)

无序分类变量,有序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.compose import ColumnTransformer
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'Frequency': ['No', 'No', 'Sometimes','Always'],
                  'rating': [5, 3, 4, 5]})  
ct = ColumnTransformer(
    [("onehot", OneHotEncoder(), ['city']), # city, 无序分类变量,用OneHotEncoder处理
     ("ordinal", OrdinalEncoder(categories=['No', 'Sometimes', 'Always']), ['Frequency'])], # Frequency,有序分类变量,用OrdinalEncoder处理,并设置顺序categories=['No', 'Sometimes', 'Always']
     remainder='passthrough') # remainder,剩余的变量保存不变
ct.fit_transform(X)
相关推荐
云起无垠6 分钟前
“AI+Security”系列第4期(一)之“洞” 见未来:AI 驱动的漏洞挖掘新范式
人工智能
QQ_77813297424 分钟前
基于深度学习的图像超分辨率重建
人工智能·机器学习·超分辨率重建
清 晨37 分钟前
Web3 生态全景:创新与发展之路
人工智能·web3·去中心化·智能合约
公众号Codewar原创作者1 小时前
R数据分析:工具变量回归的做法和解释,实例解析
开发语言·人工智能·python
IT古董1 小时前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生1 小时前
机器学习连载
人工智能·机器学习
Trouvaille ~1 小时前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm2 小时前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
汤姆和佩琦2 小时前
2024-12-25-sklearn学习(20)无监督学习-双聚类 料峭春风吹酒醒,微冷,山头斜照却相迎。
学习·聚类·sklearn
szxinmai主板定制专家2 小时前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算