sklearn 分类变量转换

sklearn 分类变量转换

在用进行机器学习模型建立时,我们拿到的数据总是包含有分类变量和数值型变量,但是sklearn模型要求的输入都是数值型的。因此,在构建模型之前,我们需要对分类变量进行转换。

分类变量的类型

分类变量一般分为无序分类变量和有序分类变量,对应的,在sklearn中,我们需要使用OnehotEncoder和OrdinalEncoder

python 复制代码
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
X = [['Male', 'US'], ['Female', 'CN'], ['Female', 'UK']]
enc.fit(X)
python 复制代码
from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder()
X = [['Male', 1], ['Female', 3], ['Female', 2]]
enc.fit(X)

复杂情况

有时我们的数据变量情况很复杂,是多种变量类型的组合,如:

无序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.compose import make_column_selector
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'rating': [5, 3, 4, 5]})  
ct = make_column_transformer(
      (StandardScaler(),
       make_column_selector(dtype_include=np.number)),  # rating,数值型变量,用StandardScaler处理
      (OneHotEncoder(),
       make_column_selector(dtype_include=object)))  # city,无序的分类变量,用OneHotEncoder处理
ct.fit_transform(X)

无序分类变量,有序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.compose import ColumnTransformer
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'Frequency': ['No', 'No', 'Sometimes','Always'],
                  'rating': [5, 3, 4, 5]})  
ct = ColumnTransformer(
    [("onehot", OneHotEncoder(), ['city']), # city, 无序分类变量,用OneHotEncoder处理
     ("ordinal", OrdinalEncoder(categories=['No', 'Sometimes', 'Always']), ['Frequency'])], # Frequency,有序分类变量,用OrdinalEncoder处理,并设置顺序categories=['No', 'Sometimes', 'Always']
     remainder='passthrough') # remainder,剩余的变量保存不变
ct.fit_transform(X)
相关推荐
Rabbit_QL2 分钟前
【深度学习原理】数值稳定性(二):梯度是如何在深度网络中消失与爆炸的
人工智能·深度学习
热爱专研AI的学妹9 分钟前
数眼搜索API与博查技术特性深度对比:实时性与数据完整性的核心差异
大数据·开发语言·数据库·人工智能·python
thinkerCoder13 分钟前
SmoothQuant:一种用于大型语言模型的准确高效的训练后量化方法
人工智能·语言模型·自然语言处理
HUI 别摸鱼了16 分钟前
【Gabor滤波】
人工智能
好奇龙猫22 分钟前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
LiFileHub35 分钟前
ISO/IEC 5338:2023中文版
人工智能
慎独4131 小时前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能
CICI131414131 小时前
自动化焊接机器人厂家哪家好?
人工智能·机器人·自动化
ZzzZ314159261 小时前
【无标题】
人工智能
Hcoco_me1 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec