sklearn 分类变量转换

sklearn 分类变量转换

在用进行机器学习模型建立时,我们拿到的数据总是包含有分类变量和数值型变量,但是sklearn模型要求的输入都是数值型的。因此,在构建模型之前,我们需要对分类变量进行转换。

分类变量的类型

分类变量一般分为无序分类变量和有序分类变量,对应的,在sklearn中,我们需要使用OnehotEncoder和OrdinalEncoder

python 复制代码
from sklearn.preprocessing import OneHotEncoder
enc = OneHotEncoder()
X = [['Male', 'US'], ['Female', 'CN'], ['Female', 'UK']]
enc.fit(X)
python 复制代码
from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder()
X = [['Male', 1], ['Female', 3], ['Female', 2]]
enc.fit(X)

复杂情况

有时我们的数据变量情况很复杂,是多种变量类型的组合,如:

无序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
from sklearn.compose import make_column_selector
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'rating': [5, 3, 4, 5]})  
ct = make_column_transformer(
      (StandardScaler(),
       make_column_selector(dtype_include=np.number)),  # rating,数值型变量,用StandardScaler处理
      (OneHotEncoder(),
       make_column_selector(dtype_include=object)))  # city,无序的分类变量,用OneHotEncoder处理
ct.fit_transform(X)

无序分类变量,有序分类变量和数值型变量

python 复制代码
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
from sklearn.compose import ColumnTransformer
import numpy as np
import pandas as pd  
X = pd.DataFrame({'city': ['London', 'London', 'Paris', 'Sallisaw'],
                  'Frequency': ['No', 'No', 'Sometimes','Always'],
                  'rating': [5, 3, 4, 5]})  
ct = ColumnTransformer(
    [("onehot", OneHotEncoder(), ['city']), # city, 无序分类变量,用OneHotEncoder处理
     ("ordinal", OrdinalEncoder(categories=['No', 'Sometimes', 'Always']), ['Frequency'])], # Frequency,有序分类变量,用OrdinalEncoder处理,并设置顺序categories=['No', 'Sometimes', 'Always']
     remainder='passthrough') # remainder,剩余的变量保存不变
ct.fit_transform(X)
相关推荐
夏天是冰红茶3 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩6 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3936 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99906 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1237 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见7 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A7 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR8 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383128 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
JoannaJuanCV8 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla