本质矩阵分解计算R&t

1 本质矩阵的计算

上一文章中描述了本质矩阵的计算,计算机视觉-对极几何-CSDN博客,那么计算得到本质矩阵有什么用?其中一个应用是通过本质矩阵计算得到2D-2D的相对变换。

在相关矩阵计算时,一般会在两幅图像中,根据特征找到对应匹配对后估计出基础矩阵F或本质矩阵E,如果是直接估计出基础矩阵F,且知道两幅图中的相机参数分别为K1、K2,则可以直接得到本质矩阵E

对于本质矩阵与相对变换的R和t有如下关系(注意这里指的相对变换是从第一幅图变换到第二幅图的位姿相对变换)

集体的求解方法参考4中参考文献。

3 R t 的恢复

使用opencv api :

复制代码
int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t,
                 InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 OutputArray R, OutputArray t, double focal = 1.0,
                 Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t, 
                 double distanceThresh, InputOutputArray mask = noArray(),
                 OutputArray triangulatedPoints = noArray());

E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中的点;
points2:第二张图片中的点;
cameraMatrix:相机内参矩阵,它是3x3的矩阵;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;
focal:相机焦距;
pp:像素坐标的原点;
distanceThresh:点的距离阈值,用来滤出距离较远的点;
triangulatedPoints:通过三角化还原点;

4 参考博客

SLAM之本质矩阵分解得相对变换的R和t -- MathSword数值计算软件

https://note.youdao.com/ynoteshare/index.html?id=5e98f487c40ef22f90e1177f29271be5&type=note&_time=1666954937067

相关推荐
qq_3751679814 小时前
No module named ‘mmcv._ext‘
人工智能·计算机视觉
AI浩18 小时前
基于特征信息驱动的位置高斯分布估计的小目标检测
人工智能·目标检测·计算机视觉
feifeigo12318 小时前
基于MATLAB的木材图像去噪算法实现
算法·计算机视觉·matlab
冒冒菜菜21 小时前
根据txt标签文件在图像上生成真实标签框
人工智能·计算机视觉
zcg194221 小时前
不用干净数据也能学会降噪——N2N派
深度学习·计算机视觉
fantasy_arch21 小时前
AV1视频编码位于图像边界的超级块划分
计算机视觉·音视频·av1
LittroInno1 天前
Tofu6 无人机、鸟识别跟踪模组
人工智能·计算机视觉·无人机
Dfreedom.1 天前
第一阶段:U-net++的概况和核心价值
人工智能·深度学习·神经网络·计算机视觉·图像分割·u-net·u-net++
MhZhou04121 天前
开源 医学对比感知注意力机制用于医学跨模态分割
人工智能·计算机视觉
格林威1 天前
工业缺陷检测:提升识别精度的 6 大核心方法及 OpenCV + Halcon 实战代码
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机