本质矩阵分解计算R&t

1 本质矩阵的计算

上一文章中描述了本质矩阵的计算,计算机视觉-对极几何-CSDN博客,那么计算得到本质矩阵有什么用?其中一个应用是通过本质矩阵计算得到2D-2D的相对变换。

在相关矩阵计算时,一般会在两幅图像中,根据特征找到对应匹配对后估计出基础矩阵F或本质矩阵E,如果是直接估计出基础矩阵F,且知道两幅图中的相机参数分别为K1、K2,则可以直接得到本质矩阵E

对于本质矩阵与相对变换的R和t有如下关系(注意这里指的相对变换是从第一幅图变换到第二幅图的位姿相对变换)

集体的求解方法参考4中参考文献。

3 R t 的恢复

使用opencv api :

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t,
                 InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 OutputArray R, OutputArray t, double focal = 1.0,
                 Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t, 
                 double distanceThresh, InputOutputArray mask = noArray(),
                 OutputArray triangulatedPoints = noArray());

E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中的点;
points2:第二张图片中的点;
cameraMatrix:相机内参矩阵,它是3x3的矩阵;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;
focal:相机焦距;
pp:像素坐标的原点;
distanceThresh:点的距离阈值,用来滤出距离较远的点;
triangulatedPoints:通过三角化还原点;

4 参考博客

SLAM之本质矩阵分解得相对变换的R和t -- MathSword数值计算软件

https://note.youdao.com/ynoteshare/index.html?id=5e98f487c40ef22f90e1177f29271be5&type=note&_time=1666954937067

相关推荐
如若1232 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
加密新世界4 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
WeeJot嵌入式7 小时前
OpenCV:计算机视觉的瑞士军刀
计算机视觉
思通数科多模态大模型8 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
学不会lostfound8 小时前
三、计算机视觉_05MTCNN人脸检测
pytorch·深度学习·计算机视觉·mtcnn·p-net·r-net·o-net
Mr.谢尔比9 小时前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
思通数科AI全行业智能NLP系统9 小时前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
李歘歘13 小时前
Stable Diffusion经典应用场景
人工智能·深度学习·计算机视觉
饭碗、碗碗香13 小时前
OpenCV笔记:图像去噪对比
人工智能·笔记·opencv·计算机视觉
蚂蚁没问题s15 小时前
图像处理 - 色彩空间转换
图像处理·人工智能·算法·机器学习·计算机视觉