本质矩阵分解计算R&t

1 本质矩阵的计算

上一文章中描述了本质矩阵的计算,计算机视觉-对极几何-CSDN博客,那么计算得到本质矩阵有什么用?其中一个应用是通过本质矩阵计算得到2D-2D的相对变换。

在相关矩阵计算时,一般会在两幅图像中,根据特征找到对应匹配对后估计出基础矩阵F或本质矩阵E,如果是直接估计出基础矩阵F,且知道两幅图中的相机参数分别为K1、K2,则可以直接得到本质矩阵E

对于本质矩阵与相对变换的R和t有如下关系(注意这里指的相对变换是从第一幅图变换到第二幅图的位姿相对变换)

集体的求解方法参考4中参考文献。

3 R t 的恢复

使用opencv api :

复制代码
int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t,
                 InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 OutputArray R, OutputArray t, double focal = 1.0,
                 Point2d pp = Point2d(0, 0), InputOutputArray mask = noArray() );

int recoverPose( InputArray E, InputArray points1, InputArray points2,
                 InputArray cameraMatrix, OutputArray R, OutputArray t, 
                 double distanceThresh, InputOutputArray mask = noArray(),
                 OutputArray triangulatedPoints = noArray());

E:已经求解出来的本质矩阵,它是3x3的矩阵;
points1:第一张图片中的点;
points2:第二张图片中的点;
cameraMatrix:相机内参矩阵,它是3x3的矩阵;
R:求解出来的两帧图片之间的旋转矩阵;
t:求解出来的两帧图片之间的平移向量;
focal:相机焦距;
pp:像素坐标的原点;
distanceThresh:点的距离阈值,用来滤出距离较远的点;
triangulatedPoints:通过三角化还原点;

4 参考博客

SLAM之本质矩阵分解得相对变换的R和t -- MathSword数值计算软件

https://note.youdao.com/ynoteshare/index.html?id=5e98f487c40ef22f90e1177f29271be5&type=note&_time=1666954937067

相关推荐
这张生成的图像能检测吗5 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
翔云 OCR API10 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ11 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
音视频牛哥15 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
audyxiao00119 小时前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
AI科技星20 小时前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
深蓝海拓20 小时前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
Coding茶水间1 天前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
CoovallyAIHub1 天前
如何在手机上轻松识别多种鸟类?我们发现了更简单的秘密……
深度学习·算法·计算机视觉
CoovallyAIHub1 天前
抛弃LLM!MIT用纯视觉方法破解ARC难题,性能接近人类水平
深度学习·算法·计算机视觉