深度学习:交叉熵损失(Cross Entropy Loss)

交叉熵损失(Cross Entropy Loss)

定义和数学表达

交叉熵损失是一种常用于评估概率分类模型性能的损失函数。它衡量的是模型预测的概率分布与真实分布之间的差异。交叉熵损失特别适用于分类任务中,尤其是多类分类问题。

数学上,交叉熵可以定义为:

[ $C(\mathbf{y}, \mathbf{\hat{y}}) = -\sum_{i=1}^{N} y_i \log(\hat{y}_i) $]

其中:

  • ( y \mathbf{y} y ) 是真实的标签分布,通常表示为one-hot编码向量。
  • ( $\mathbf{\hat{y}} $) 是模型预测的概率分布,由模型的输出层经过softmax函数转换得到。
  • ( N ) 是类别的总数。
  • ( y i y_i yi ) 是实际标签在第 ( i i i ) 类的值(0或1),( \\hat{y}_i KaTeX parse error: Can't use function '\\)' in math mode at position 1: \\̲)̲ 是预测为第 \\( i ) 类的概率。
特性

交叉熵损失的核心特性包括:

  • 敏感性:这个函数对正确分类的概率非常敏感。如果实际类别的预测概率低(即接近于0),那么损失将会非常高。
  • 非对称性:这种损失在处理极端概率(接近0或1)时表现出明显的非对称性。特别是当预测概率趋近于0时,损失会迅速增加。
交叉熵与信息论

在信息论中,交叉熵衡量的是使用错误的概率分布(模型预测)来编码事件(实际发生的类别)所需的额外信息量。理想情况下,我们希望模型的预测分布尽可能接近真实分布,这样交叉熵就最小,表示预测非常准确。

实例解释

考虑一个简单的三类分类问题,比如预测一张图片是猫、狗还是鸟。假设对于一个实例,真实标签是狗,模型的预测输出(经过softmax)为:

[$ \hat{y} = [0.1, 0.7, 0.2]$ ]

对应的真实标签的one-hot编码为:

[$ y = [0, 1, 0]$ ]

交叉熵损失计算为:

[ $C(y, \hat{y}) = -(0 \times \log(0.1) + 1 \times \log(0.7) + 0 \times \log(0.2)) = -\log(0.7) $]

[ C ( y , y ^ ) ≈ 0.3567 C(y, \hat{y}) \approx 0.3567 C(y,y^)≈0.3567 ]

这表明模型对真实类别(狗)的预测概率为0.7时的损失为0.3567。如果模型对狗的预测概率更高,比如0.9,则损失会更低,显示为:

[ C ( y , y ^ ) = − log ⁡ ( 0.9 ) ≈ 0.1054 C(y, \hat{y}) = -\log(0.9) \approx 0.1054 C(y,y^)=−log(0.9)≈0.1054 ]

结论

交叉熵损失函数是监督学习中非常重要的工具,特别是在处理分类问题时。它不仅提供了一种衡量模型性能的方法,还通过梯度下降等优化算法指导了模型的学习过程。优化交叉熵损失可以帮助模型更好地学习区分不同类别,提高分类的准确率。

相关推荐
孙同学要努力30 分钟前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee202130 分钟前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧32 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽2 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_2 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客2 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI2 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-2 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh2 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能
Elastic 中国社区官方博客2 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理