FlinkSQL源码解析1--提交任务过程

提交入口

org.apache.flink.table.api.internal.TableEnvironmentImpl#executeSql

@Override

public TableResult executeSql(String statement) {

List<Operation> operations = getParser().parse(statement);

if (operations.size() != 1) {

throw new TableException(UNSUPPORTED_QUERY_IN_EXECUTE_SQL_MSG);

}

Operation operation = operations.get(0);

return executeInternal(operation);

}

提交过程概述

sql--》operation--》Transformation--》pipeline(StreamGraph)--》JobGraph--》deployJobCluster

具体过程

1、查询转成operation

sql-->SqlNodeList-->flinkPlanner.validate(sqlNode)-->Optional<Operation> operation = SqlNodeConverters.convertSqlNode(validated, context);

2、operation转成pipeline(StreamGraph)

org.apache.flink.table.api.internal.TableEnvironmentImpl#executeQueryOperation

executeQueryOperation--》

2.1、operation转成Transformation

List<Transformation<?>> transformations = translate(Collections.singletonList(sinkOperation));--》

org.apache.flink.table.planner.delegation.PlannerBase#translate

2.2、Transformation转成pipeline

Pipeline pipeline =

execEnv.createPipeline(

transformations, tableConfig.getConfiguration(), defaultJobName);

2.3、pipeline转成streamGraph

final StreamGraph streamGraph = executionEnvironment.generateStreamGraph(transformations); // StreamGraph是Pipeline接口的实现类

3、将StreamGraph转成JobGraph

org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#executeAsync(org.apache.flink.streaming.api.graph.StreamGraph)

JobClient jobClient = execEnv.executeAsync(pipeline);

3.1、final PipelineExecutor executor = getPipelineExecutor();

CompletableFuture<JobClient> jobClientFuture =

executor.execute(streamGraph, configuration, userClassloader);

3.2、createJobGraph#new StreamingJobGraphGenerator(

userClassLoader, streamGraph, jobID, serializationExecutor)

.createJobGraph();

4、将jobGraph提交到集群

org.apache.flink.client.deployment.executors.AbstractJobClusterExecutor#execute

4.1、获取集群信息

final ClusterClientProvider<ClusterID> clusterClientProvider =

clusterDescriptor.deployJobCluster(

clusterSpecification, jobGraph, configAccessor.getDetachedMode

4.2、提交任务到集群

return CompletableFuture.completedFuture(

new ClusterClientJobClientAdapter<>(

clusterClientProvider, jobGraph.getJobID(), userCodeClassloader));

相关推荐
翰林小院10 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
过尽漉雪千山20 小时前
Flink1.17.0集群的搭建
java·大数据·linux·flink·centos
mask哥1 天前
详解mcp以及agen架构设计与实现
java·微服务·flink·大模型·ai agent·springai·mcp
潘达斯奈基~2 天前
Google AI Studio使用1:创建Flink测试题APP
大数据·flink·aigc
jiedaodezhuti3 天前
Flink on YARN 实战问题排查指南(精华版)
大数据·flink
Hello.Reader3 天前
Apache Flink 从流处理基础到恰好一次语义
flink·apache·linq
天翼云开发者社区4 天前
Flink 与Flink可视化平台StreamPark教程(CDC功能)
大数据·flink
Apache Flink5 天前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
人工智能·flink·apache
索迪迈科技5 天前
Flink Task线程处理模型:Mailbox
java·大数据·开发语言·数据结构·算法·flink