FlinkSQL源码解析1--提交任务过程

提交入口

org.apache.flink.table.api.internal.TableEnvironmentImpl#executeSql

@Override

public TableResult executeSql(String statement) {

List<Operation> operations = getParser().parse(statement);

if (operations.size() != 1) {

throw new TableException(UNSUPPORTED_QUERY_IN_EXECUTE_SQL_MSG);

}

Operation operation = operations.get(0);

return executeInternal(operation);

}

提交过程概述

sql--》operation--》Transformation--》pipeline(StreamGraph)--》JobGraph--》deployJobCluster

具体过程

1、查询转成operation

sql-->SqlNodeList-->flinkPlanner.validate(sqlNode)-->Optional<Operation> operation = SqlNodeConverters.convertSqlNode(validated, context);

2、operation转成pipeline(StreamGraph)

org.apache.flink.table.api.internal.TableEnvironmentImpl#executeQueryOperation

executeQueryOperation--》

2.1、operation转成Transformation

List<Transformation<?>> transformations = translate(Collections.singletonList(sinkOperation));--》

org.apache.flink.table.planner.delegation.PlannerBase#translate

2.2、Transformation转成pipeline

Pipeline pipeline =

execEnv.createPipeline(

transformations, tableConfig.getConfiguration(), defaultJobName);

2.3、pipeline转成streamGraph

final StreamGraph streamGraph = executionEnvironment.generateStreamGraph(transformations); // StreamGraph是Pipeline接口的实现类

3、将StreamGraph转成JobGraph

org.apache.flink.streaming.api.environment.StreamExecutionEnvironment#executeAsync(org.apache.flink.streaming.api.graph.StreamGraph)

JobClient jobClient = execEnv.executeAsync(pipeline);

3.1、final PipelineExecutor executor = getPipelineExecutor();

CompletableFuture<JobClient> jobClientFuture =

executor.execute(streamGraph, configuration, userClassloader);

3.2、createJobGraph#new StreamingJobGraphGenerator(

userClassLoader, streamGraph, jobID, serializationExecutor)

.createJobGraph();

4、将jobGraph提交到集群

org.apache.flink.client.deployment.executors.AbstractJobClusterExecutor#execute

4.1、获取集群信息

final ClusterClientProvider<ClusterID> clusterClientProvider =

clusterDescriptor.deployJobCluster(

clusterSpecification, jobGraph, configAccessor.getDetachedMode

4.2、提交任务到集群

return CompletableFuture.completedFuture(

new ClusterClientJobClientAdapter<>(

clusterClientProvider, jobGraph.getJobID(), userCodeClassloader));

相关推荐
Flink_China1 小时前
抖音集团电商流量实时数仓建设实践
大数据·flink
24k小善15 小时前
FlinkUDF用户自定义函数深度剖析
java·大数据·spring·flink·云计算
Apache Flink19 小时前
京东物流基于Flink & StarRocks的湖仓建设实践
java·大数据·flink
董可伦19 小时前
Flink 源码编译
大数据·flink·源码
南客先生20 小时前
海量聊天消息处理:ShardingJDBC分库分表、ClickHouse冷热数据分离、ES复合查询方案、Flink实时计算与SpringCloud集成
java·clickhouse·elasticsearch·flink·springcloud·shardingjdbc
背着黄油面包的猫20 小时前
速通FlinkCDC3.0
数据库·mysql·flink
TDengine (老段)1 天前
TDengine 流计算引擎设计
大数据·数据库·物联网·flink·时序数据库·tdengine·涛思数据
晴天彩虹雨2 天前
实时数仓体系概览与架构演进
数据仓库·clickhouse·架构·flink·kafka
Debug_TheWorld2 天前
Apache Flink 深度解析:流处理引擎的核心原理与生产实践指南
大数据·flink·apache
黄雪超3 天前
Flink介绍——实时计算核心论文之Dataflow论文详解
大数据·论文阅读·flink