贪心算法---java---黑马

贪心算法

1)Greedy algorithm

称之为贪心算法或者贪婪算法,核心思想是

  1. 将寻找最优解的问题分为若干个步骤
  2. 每一步骤都采用贪心原则,选取当前最优解
  3. 因为未考虑所有可能,局部最优的堆叠不一定得到最终解最优

贪心算法例子

Dijkstra

java 复制代码
while (!list.isEmpty()) {
    // 选取当前【距离最小】的顶点
    Vretex curr = chooseMinDistVertex(list);
    
    // 更新当前顶点到相邻顶点距离
    updateNeighboursDish(curr);
    
    // list集合中移除当前顶点
    list.remove(curr);
    // 标记当前顶点已被访问
    curr.visited = true;
}
  • 未能找到最短路径:存在负边 情况,得不到正确解;
  • 贪心原则会认为本次已找到该顶点的最短路径,使得该顶点赋为已访问
  • 与之对比,Bellman-Ford算法并未考虑局部距离最小顶点,而是每次处理所有边 ,不会出错,当然效率不如Dijkstra算法;

prim

java 复制代码
while (!list.isEmpty()) {
    // 选取当前【距离最小】的顶点
    Vretex curr = chooseMinDistVertex(list);
    // 更新当前顶点到相邻顶点距离
    updateNeighboursDish(curr);
    // list集合中移除当前顶点
    list.remove(curr);
    // 标记当前顶点已被访问
    curr.visited = true;
}

prim与Dijkstra的区别在于,根据距离选取最小顶点不同,Dijkstra算法是一个累加距离 ,而prim算法中距离是跟相邻顶点间的距离

KrusKal

java 复制代码
List<String> list = new ArrayList<>();
DisjoinSet set = new DisjoinSet(size);
while (list.size() < size - 1) {
    // 选取当前【距离最短】的边
    Edge poll = queue.poll();
    int i = set.find(poll.start);
    int j = set.find(poll.end);
    // 判断两个集合是否相交
    if (i != j) {// 未相交
        list.add(poll);
        set.union(i, j);	// 相交操作
    }
    
}

其他贪心算法例子

  • 选择排序、堆排序
  • 拓扑排序
  • 并查集和中的union by size 和union by height
  • 哈夫曼编码
  • 钱币找零
  • 任务编排
  • 近似算法

零钱兑换ⅡLeetcode518

递归实现

java 复制代码
public class Leetcode518 {
    public int change(int[] coins, int amount) {
        return coinChange(coins, 0, amount, new LinkedList<>(), true);
    }
    
    public int coinChange(int[] coins, int index, int amount, LinkedList<Integer> stack, boolean first) {
        if (!first) {
            stack.push(coins[i]);
        }
        int sum = 0;
        if (amount == 0) {
            System.out.printlin(stack);
            sum = 1;
        } else if (amount < 0) {
            System.out.println(stack)
            sum = 0;
        } else {
            for(int i = index; i < coins.length; i++) {
               sum += coinChange(coins, i, amount - coins[i], stack, false);
            }
        }
        if (!stack.isEmpty()) {
            stack.pop();
        }
        return sum;
    }
}
    

零钱兑换Leetcode322

递归实现

java 复制代码
public class Leetcode322 {
    
    static int min = -1;
    
    public int change(int[] coins, int amount) {
        coinChange(coins, 0, amount, new AtomicInteger(-1), new LinkedList<Integer>(), true);
        return min;
    }
    
    public void coinChange(int[] coins, int index, int amount, AtomicInteger count, LinkedList<Integer> stack, boolean first) {
        if (!first) {
            stack.push(coins[i]);
        }
        count.incrementAndGet();	// count++;
        int sum = 0;
        if (amount == 0) {
            System.out.println(stack);
            if (min == -1) {
                min = min.get();
            } else {
                min = Math.min(min, count.get());
            }
        } else {
            for(int i = index; i < coins.length; i++) {
               sum += coinChange(coins, i, amount - coins[i], count, stack, false);
            }
        }
        count.decrementAndGet();	// count--;	
        if (!stack.isEmpty()) {
            stack.pop();
        }
        return sum;
    }
    
    public static void main(String[] args) {
        int[] coins = {5, 2, 1};
        Leetcode322 leetcode = new Leetcode322();
        System.out.printlin(leetcode.coinChange(coins, 5));
    }
}

贪心实现

java 复制代码
public class Leetcode322{
    
    public int coinChange(int[] coins, int amount) {
        
        // 前提是coins是降序排序
    	int reminder = amount;
        int count;
        for(int coin : coins) {
            while (reminder > coin) {
                reminder -= coin;
                count++;
            }
            if (reminder == coin) {
                reminder -= coin;
                count++;
                break;
            }
        }
        if (reminder > 0) {
            return -1;
        } else {
            return count;
        }
    }
    
}

但是这个代码放到Leetcode上跑,有些测试用例是不能通过。

动态规划实现

使用动态规划求解,如下面代码

java 复制代码
public class Leetcode322{
    
    public int coinChange(int[] coins, int amount) {
        
        int[] dp = new int[amount + 1];
        Arrays.fill(dp, amount + 1);
        dp[0] = 0;
        for(int coin : coins) {
            for(int j = coin; j < amount + 1; j++) {
                dp[j] = Math.min(dp[j], dp[j - coin] + 1);
            }
        }
        int r = dp[amount];
        return r > amount ? -1 : r;
    }
    
}

哈夫曼编码

Huffman树构建过程

  1. 统计出现频次字符,放入优先级队列
  2. 每次出对两个频次最低元素(小顶堆),
  3. 当队列中只有一个元素时,构建Huffman树完成
java 复制代码
public class Huffman{
    
    static class Node{
        Character ch;
        int freq;
        Node left;
        Node right;
        String code;
        
        public Node(Character ch) {
            this.ch = ch;
        }
        
        public Node(int freq, Node left, Node right) {
            this.freq = freq;
            this.left = left;
            this.right = right;
        }
        
        int getFreq() {
            return freq;
        }
        
        boolean isLeaf() {
            return node.left == null;
        }
        
        @Override
        public void toString() {
            return "Node{" +
                "ch=" + ch + 
                ", freq=" + freq +
                "}";
        }
    }
    
    String str;
    Node root;
    HashMap<Character, Node> map = new HashMap<>();
    public Huffman(String str) {
        this.str = str;
        char[] chars = str.toCharArray();
		
        // 1.统计频次
        for(char ch : chars) {
            if (!map.containsKey(ch)) {
                map.put(ch, new Node(ch));
            } else {
                Node node = map.get(ch);
                node.freq++;
            }
            
            //方法引用
            // Node node = map.computeIfAbsent(ch, Node :: new);
            // node.frea++;
        }
        for(Node node : map.values()) {
            System.out.println(node.toString());
        }
        
        2.构造树
        PriorityQueue<Node> queue = new PriorityQueue<>(
        Comparator.ComparingInt(Node::getFreq)
        );
        queue.offerAll(map.values());
        while (queue.size() >= 2) {
            Node x = queue.poll();
            Node y = queue.poll();
            int f = x.freq + y.freq;
            queue.offer(new Node(f, x, y));
        }
        root = queue.poll();
        System.out.println(root);
        
        // 功能3 计算每个字符编码		//功能4 字符串编码后占几个bit
        int sum = dfs(root, new StringBuilder());		// 得到字符串编码后占的bit
        for(Node node : map.values()) {
            System.out.printlin(node);
        }
        System.out.println(sum);
        
    }
    
    public int dfs(Node node, StringBuilder sb) {
        int sum = 0;
        if (node.isLeaf()) {
            //编码
            node.node = sb.toString();
            sum = sb.length() * node.freq;
         	// System.out.println(sb.toString());   
        } else {
            sum += dfs(node.left, sb.append("0"));
            sum += dfs(node.right, sb.append("1"));
        }
        if (sb.length() > 0) {
            sb.deleteCharAt(sb.length() - 1);
        }
        return sum;
    }
    
    public String encode() {
        char[] chars = str.toCharArray();
        StringBuilder sb = new StringBuilder();
        for(char ch : chars) {
            sb.append(map.get(ch).code);
        }
        return sb.toString();
    }
    
    public String decode(String str) {
        int i = 0;
        char[] chars = str.toCharArray();
        StringBuilder sb = new StringBuilder();
        Node node = root;
        while (i < chars.length) {
            if (!node.isLeaf()) {
                if (chars[i] == '0') {
                    node = node.left;
                } else if (chars[i] == '1'){
                    node = node.right;
                }
                i++;
            } 
            if (node.isLeaf()) {
                sb.append(node.ch);
                node = root;
            }
            
        }
        return sb.toString();
    }
}

活动选择问题

要在一个会议室举办n个活动

  • 每个活动有它们各自的起始和结束时间
  • 找出时间上不冲突的活动组合,能够最充分利用会议室(举办的活动次数最多)
java 复制代码
public class ActivitySelectionProblem{
    
    static class Activity{
        int index;
        int start;
        int end;
        
        public Activity(int index, int start, int end) {
            this.index = index;
            this.start = start;
            this.end = end;
        }
        
        public int getEnd() {
            return end;
        }
        
        @Override
        public void tostring() {
            return "Activity(" + index + ")";
        }
    }
    
    public static void main(String[] args) {
        Activity[] activity = new Activity[]{
            new Activity(0, 1, 3),
            new Activity(1, 2, 4),
            new Activity(2, 3, 5)
        }	
        
        Arrays.sort(activity, Comparator.comparingInt(Activity::getEnd))
        System.out.println(activity);
        
        // 
        select(activity, activity.length);
    }
    
    public void select(Activity[] activity, int n) {
        
        List<int[]> res = new ArrayList<>();
        res.add(activity[0]);
        Activity pre = res;
        for(int i = 1; i < n; i++) {
            Activity curr = activity[i];
            if (curr.start >= pre.end) {
                res.add(curr);
                pre =  curr;
            }
        }
        for(Activity a : res) {
            System.out.println(a);
        }
    }
}

Leetcode435

无重叠区间

java 复制代码
public class Leetcode435{
    
    public int eraseOverlapIntervals(int[][] intervals) {
        // 根据数组中的第二个元素先升序排序
        Arrays.sort(intervals, (a, b) -> a[1] - b[1]);
        
        List<int[]> res = new ArrayList<>();
        res.add(intervals[0]);
        int[] pre = res.get(0);
        int count = 0;	// 减少个数
        for(int i = 1; i < intervals.length; i++) {
            int[] curr = intervals[i];
            if (curr[0] < pre[1]) {		// 当前的初始值小于前一个的结束值,有冲突
                count++;
            } else {	// 只要当前的初始值大于等于前一个的结束值,则不冲突
                res.add(curr);
                pre = curr;
            }
        }
        return count;
    }
}

分数背包问题

  1. n个液体物品,有重量和价格属性
  2. 现取走10L物品
  3. 每次可以不拿,全拿,拿一部分,问最高价值是多少
java 复制代码
public class FractionalKnapsackProblem{
    
    static class Item{
        int index;
        int weight;
        int value;
        
        public Item(int index, int weight, int value) {
            this.index = index;
            this.weight = weight;
            this.value = value;
        }
        
        public int perValue() {
            return value / weight;
        }
        
        @Override
        public void toString() {
            return "Item(" + index + ")";
        }
    }
    
    public static void main(String[] args) {
        Item[] items = new Item[]{
            new Item(0, 4, 24),
            new Item(1, 8, 160),
            new Item(2, 2, 4000),
            new Item(3, 6, 108),
            new Item(4, 1, 4000),
        }
        
        select(items, 10);
    }
    
    public int select(Item[] items, int n) {
        Arrays.sort(items, Comparator.comparingInt(Item::preValue).reverse());
        int sum = 0;
        for(int i = 0; i < items.length; i++) {
            Item curr = items[i];
            if (n >= curr.weight) {
                n -= curr.weight;
                sum += curr.value;
            } else {
                sum += curr.perValue() * n;
                break;
            }
        }
        return sum;
    }
}

0-1背包问题

  1. n个物体都是固体,有重量和价值
  2. 现取走不超过10克物品
  3. 每次可以不拿或者全拿,问最高价值是多少
java 复制代码
public class FractionalKnapsackProblem{
    
    static class Item{
        int index;
        int weight;
        int value;
        
        public Item(int index, int weight, int value) {
            this.index = index;
            this.weight = weight;
            this.value = value;
        }
        
        public int perValue() {
            return value / weight;
        }
        
        @Override
        public void toString() {
            return "Item(" + index + ")";
        }
    }
    
    public static void main(String[] args) {
        Item[] items = new Item[]{
            new Item(0, 1, 1000000),
            new Item(1, 4, 1600),
            new Item(2, 8, 2400),
            new Item(3, 5, 30),
        }
        
        select(items, 10);
    }
    
    public int select(Item[] items, int n) {
        Arrays.sort(items, Comparator.comparingInt(Item::preValue).reverse());
        int sum = 0;
        for(int i = 0; i < items.length; i++) {
            Item curr = items[i];
            if (n >= curr.weight) {
                n -= curr.weight;
                sum += curr.value;
            }
        }
        return sum;
    }
}

得到的结果,最大价值结果是:1001630 ,实际上选择钻石红宝石 得到的价值结果 1002400

贪心算法局限性

相关推荐
天天扭码8 分钟前
五天SpringCloud计划——DAY1之mybatis-plus的使用
java·spring cloud·mybatis
程序猿小柒13 分钟前
leetcode hot100【LeetCode 4.寻找两个正序数组的中位数】java实现
java·算法·leetcode
不爱学习的YY酱1 小时前
【操作系统不挂科】<CPU调度(13)>选择题(带答案与解析)
java·linux·前端·算法·操作系统
丁总学Java1 小时前
Maven项目打包,com.sun.tools.javac.processing
java·maven
kikyo哎哟喂1 小时前
Java 代理模式详解
java·开发语言·代理模式
duration~1 小时前
SpringAOP模拟实现
java·开发语言
小码ssim1 小时前
IDEA使用tips(LTS✍)
java·ide·intellij-idea
潜洋2 小时前
Spring Boot教程之五:在 IntelliJ IDEA 中运行第一个 Spring Boot 应用程序
java·spring boot·后端
暮志未晚Webgl2 小时前
109. UE5 GAS RPG 实现检查点的存档功能
android·java·ue5
小叶lr3 小时前
idea 配置 leetcode插件 代码模版
java·leetcode·intellij-idea