【大模型开发指南】llamaindex配置deepseek、jina embedding及chromadb实现本地RAG及知识库(win系统、CPU适配)

说一些坑,本来之前准备用milvus,但是发现win搞不了(docker都配好了)。然后转头搞chromadb。这里面还有就是embedding一般都是本地部署,但我电脑是cpu的没法玩,我就选了jina的embedding性能较优(也可以换glm的embedding但是要改代码)。最后问题出在deepseek与llamaindex的适配,因为采用openai的接口,这里面改了openai库的源码然后对llamaindex加了配置项才完全跑通。国内小伙伴如果使用我这套方案可以抄,给我点个赞谢谢。

主要环境:

bash 复制代码
os:win11
python3.10
llamaindex  0.11.20
chromadb   0.5.15
这个文件是官方例子,自己弄个也成

源码如下:

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk"

openai.api_base = "https://api.deepseek.com/v1"
llm = OpenAI(model='deepseek-chat',api_key=openai.api_key, base_url=openai.base_url)


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)
# %%
import os

jinaai_api_key = "jina"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# save to disk

db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)

# load from disk
db2 = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db2.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
    vector_store,
    embed_model=embed_model,
)

# Query Data from the persisted index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)

1.llamaindex如何配置deepseek

找到llama_index下面的openai的utils配置里,加入"deepseek-chat":128000,

路径C:\Users\USER.conda\envs\workspace\lib\site-packages\llama_index\llms\openai\utils.py

python 复制代码
from llama_index.llms.openai import OpenAI

llm = OpenAI(model="deepseek-chat", base_url="https://api.deepseek.com/v1", api_key="sk-")

response = llm.complete("见到你很高兴")
print(str(response))

2.llama使用jina

python 复制代码
# Initilise with your api key
import os

jinaai_api_key = "jina_"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

embeddings = text_embed_model.get_text_embedding("This is the text to embed")
print("Text dim:", len(embeddings))
print("Text embed:", embeddings[:5])

query_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.query` to get query embeddings, or choose your desired task type
    task="retrieval.query",
    # `dimensions` allows users to control the embedding dimension with minimal performance loss. by default it is 1024.
    # A number between 256 and 1024 is recommended.
    dimensions=512,
)

embeddings = query_embed_model.get_query_embedding(
    "This is the query to embed"
)
print("Query dim:", len(embeddings))
print("Query embed:", embeddings[:5])

3.llamaindex 使用chromadb

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk-"

openai.api_base = "https://api.deepseek.com/v1"


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)


# %%
import os

jinaai_api_key = "jina_"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# %%
# set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)

# %%

storage_context = StorageContext.from_defaults(vector_store=vector_store)

# %%
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)


# Settings.llm = llm

# Query Data
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)
相关推荐
工藤学编程2 天前
零基础学AI大模型之LangChain Embedding框架全解析
人工智能·langchain·embedding
居7然5 天前
Attention注意力机制:原理、实现与优化全解析
人工智能·深度学习·大模型·transformer·embedding
小蜜蜂嗡嗡10 天前
【flutter报错:Build failed due to use of deprecated Android v1 embedding.】
android·flutter·embedding
勇者无畏40412 天前
基于 Spring AI Alibaba 搭建 Text-To-SQL 智能系统(前置介绍)
java·后端·spring·prompt·embedding
BlueBirdssh14 天前
大量文本向量化 + Embedding 检索 + LLM 具体流程解析
人工智能·embedding
想ai抽15 天前
基于AI Agent的数据资产自动化治理实验
人工智能·langchain·embedding
一个处女座的程序猿16 天前
NLP之Embedding:Youtu-Embedding的简介、安装和使用方法、案例应用之详细攻略
人工智能·自然语言处理·embedding
bestcxx21 天前
0.3、AI Agent 知识库、召回、Recall、Embedding等 相关的概念
embedding·知识库·dify·rag·ai agent·recall·召回
安替-AnTi23 天前
PandaWiki:AI 驱动的开源知识库系
人工智能·embedding·检索增强·知识库·rag·查询优化
ghostwritten24 天前
深入理解嵌入模型(Embedding Model):AI 语义世界的基石
人工智能·embedding