【大模型开发指南】llamaindex配置deepseek、jina embedding及chromadb实现本地RAG及知识库(win系统、CPU适配)

说一些坑,本来之前准备用milvus,但是发现win搞不了(docker都配好了)。然后转头搞chromadb。这里面还有就是embedding一般都是本地部署,但我电脑是cpu的没法玩,我就选了jina的embedding性能较优(也可以换glm的embedding但是要改代码)。最后问题出在deepseek与llamaindex的适配,因为采用openai的接口,这里面改了openai库的源码然后对llamaindex加了配置项才完全跑通。国内小伙伴如果使用我这套方案可以抄,给我点个赞谢谢。

主要环境:

bash 复制代码
os:win11
python3.10
llamaindex  0.11.20
chromadb   0.5.15
这个文件是官方例子,自己弄个也成

源码如下:

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk"

openai.api_base = "https://api.deepseek.com/v1"
llm = OpenAI(model='deepseek-chat',api_key=openai.api_key, base_url=openai.base_url)


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)
# %%
import os

jinaai_api_key = "jina"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# save to disk

db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)

# load from disk
db2 = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db2.get_or_create_collection("quickstart")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(
    vector_store,
    embed_model=embed_model,
)

# Query Data from the persisted index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)

1.llamaindex如何配置deepseek

找到llama_index下面的openai的utils配置里,加入"deepseek-chat":128000,

路径C:\Users\USER.conda\envs\workspace\lib\site-packages\llama_index\llms\openai\utils.py

python 复制代码
from llama_index.llms.openai import OpenAI

llm = OpenAI(model="deepseek-chat", base_url="https://api.deepseek.com/v1", api_key="sk-")

response = llm.complete("见到你很高兴")
print(str(response))

2.llama使用jina

python 复制代码
# Initilise with your api key
import os

jinaai_api_key = "jina_"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

embeddings = text_embed_model.get_text_embedding("This is the text to embed")
print("Text dim:", len(embeddings))
print("Text embed:", embeddings[:5])

query_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.query` to get query embeddings, or choose your desired task type
    task="retrieval.query",
    # `dimensions` allows users to control the embedding dimension with minimal performance loss. by default it is 1024.
    # A number between 256 and 1024 is recommended.
    dimensions=512,
)

embeddings = query_embed_model.get_query_embedding(
    "This is the query to embed"
)
print("Query dim:", len(embeddings))
print("Query embed:", embeddings[:5])

3.llamaindex 使用chromadb

python 复制代码
# %%
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from IPython.display import Markdown, display

from llama_index.llms.openai import OpenAI
import chromadb

# %%

import openai
openai.api_key = "sk-"

openai.api_base = "https://api.deepseek.com/v1"


from llama_index.core import Settings


# llm = OpenAI(api_key=openai.api_key, base_url=openai.base_url)
Settings.llm = OpenAI(model="deepseek-chat",api_key=openai.api_key, base_url=openai.base_url)


# %%
import os

jinaai_api_key = "jina_"
os.environ["JINAAI_API_KEY"] = jinaai_api_key

from llama_index.embeddings.jinaai import JinaEmbedding

text_embed_model = JinaEmbedding(
    api_key=jinaai_api_key,
    model="jina-embeddings-v3",
    # choose `retrieval.passage` to get passage embeddings
    task="retrieval.passage",
)

# %%
# create client and a new collection
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")

# %%


# define embedding function
embed_model = text_embed_model

# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()

# %%
# set up ChromaVectorStore and load in data
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)

# %%

storage_context = StorageContext.from_defaults(vector_store=vector_store)

# %%
index = VectorStoreIndex.from_documents(
    documents, storage_context=storage_context, embed_model=embed_model
)


# Settings.llm = llm

# Query Data
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print('response:',response)
相关推荐
摸鱼仙人~12 小时前
深入理解 Transformer:位置编码 (Positional Encoding) 与位置嵌入 (Positional Embedding) 的核心区别
深度学习·transformer·embedding
白白要坚持2 天前
本地部署jina-bert
人工智能·bert·jina
Yeats_Liao2 天前
MindSpore开发之路(十一):构建循环神经网络(RNN):`RNN`, `LSTM`, `Embedding`层
rnn·lstm·embedding
weixin_404679314 天前
VL-JEPA: Joint Embedding Predictive Architecture for Vision-language
embedding
LDG_AGI5 天前
【推荐系统】深度学习训练框架(十七):TorchRec之KeyedJaggedTensor
人工智能·pytorch·深度学习·机器学习·数据挖掘·embedding
阿杰学AI6 天前
AI核心知识61——大语言模型之Embedding (简洁且通俗易懂版)
人工智能·机器学习·ai·语言模型·自然语言处理·embedding·词向量
minhuan7 天前
大模型应用:向量与元数据联动:解锁向量数据库复合查询的核心能力.30
embedding·大模型应用·向量数据库与元数据·向量复合查询
蜂蜜黄油呀土豆7 天前
RAG 的基石:文本嵌入模型与向量数据库
langchain·大语言模型·embedding·向量数据库·rag
喜欢吃豆8 天前
异构向量空间失配机制与负余弦相似度的深层拓扑学解析(RAG索引,检索期间embedding模型不一致会带来的后果)
embedding·拓扑学·rag
AAA_bo18 天前
liunx安装canda、python、nodejs、git,随后部署私有网页内容提取工具--JinaReader全攻略
linux·python·ubuntu·typescript·aigc·python3.11·jina