【Python 学习笔记】json

How does python work with json?

1. Loading JSON Data

If you have JSON data as a string or in a file, you can load it into a Python dictionary (or list, if the JSON data is an array) using json.loads() (for strings) or json.load() (for files).

python 复制代码
import json

# From a JSON string
json_data = '{"name": "Alice", "age": 25, "city": "New York"}'
data = json.loads(json_data)
print(data)  # Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}

# From a JSON file
with open('data.json') as file:
    data = json.load(file)
    print(data)

To convert a Python dictionary (or other JSON-serializable Python objects) into a JSON string, you can use json.dumps(). For writing to a file, use json.dump().

python 复制代码
# Convert Python dict to JSON string
python_data = {"name": "Alice", "age": 25, "city": "New York"}
json_string = json.dumps(python_data)
print(json_string)  # Output: {"name": "Alice", "age": 25, "city": "New York"}

# Write to a JSON file
with open('output.json', 'w') as file:
    json.dump(python_data, file)

3. Handling Nested JSON

If the JSON data has nested objects, you can access them by chaining dictionary keys or list indices.

python 复制代码
nested_json = '{"person": {"name": "Alice", "age": 25}, "city": "New York"}'
data = json.loads(nested_json)
print(data['person']['name'])  # Output: Alice

4. Formatting Options

json.dumps() has optional parameters for pretty-printing, sorting keys, and customizing output format.

python 复制代码
# Pretty-print JSON
formatted_json = json.dumps(python_data, indent=4, sort_keys=True)
print(formatted_json)

Why Use sort_keys?

  • Readability: It makes it easier to locate keys in large JSON outputs.
  • Consistency: Sorted keys provide consistent output, which is useful when comparing JSON strings.
  • Debugging: Having a predictable order can simplify debugging by avoiding unnecessary differences due to key ordering.

example for JSON data is an array?

Certainly! JSON data can be structured as an array, where the top-level element is a list (array) of JSON objects, rather than a single JSON object. This is common when representing collections of data, like a list of users, products, or other similar records.

python 复制代码
[
    {
        "id": 1,
        "name": "Alice",
        "age": 25,
        "city": "New York"
    },
    {
        "id": 2,
        "name": "Bob",
        "age": 30,
        "city": "Chicago"
    },
    {
        "id": 3,
        "name": "Charlie",
        "age": 35,
        "city": "San Francisco"
    }
]

How to Work with JSON Arrays in Python

You can load this JSON array into Python and iterate over the list of dictionaries

python 复制代码
import json

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Parse JSON array into Python list
data = json.loads(json_array)

# Accessing elements
for person in data:
    print(f"Name: {person['name']}, Age: {person['age']}, City: {person['city']}")
python 复制代码
Name: Alice, Age: 25, City: New York
Name: Bob, Age: 30, City: Chicago
Name: Charlie, Age: 35, City: San Francisco

Key Points

  • JSON arrays are loaded as Python lists.
  • Each item in the array is typically a JSON object (dictionary in Python).
  • You can iterate through the list and access each dictionary by its keys.

how do you load this json_array to a table?

python 复制代码
import json
import pandas as pd

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Load JSON data from file
with open('data.json') as file:
    data = json.load(file)

# Parse JSON array into a Python list
data = json.loads(json_array)
python 复制代码
   id     name  age           city
0   1    Alice   25       New York
1   2      Bob   30        Chicago
2   3  Charlie   35  San Francisco

Summary

  • Use json.loads() to parse a JSON array from a string or json.load() from a file.
  • Convert the parsed JSON data to a DataFrame using pd.DataFrame(data).
  • Each JSON object in the array becomes a row in the DataFrame.

"Answer Generated by OpenAI's ChatGPT"

相关推荐
艾莉丝努力练剑31 分钟前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
人生游戏牛马NPC1号2 小时前
学习 Flutter (三):玩安卓项目实战 - 上
android·学习·flutter
深圳卢先生4 小时前
CentOS 安装jenkins笔记
笔记·centos·jenkins
u_topian5 小时前
【个人笔记】Qt使用的一些易错问题
开发语言·笔记·qt
没有羊的王K5 小时前
SSM框架学习——day1
java·学习
林林要一直努力7 小时前
AOSP Settings模块问题初窥
android·学习·bug·android studio
余大侠在劈柴10 小时前
pdf.js 开发指南:在 Web 项目中集成 PDF 预览功能
前端·javascript·学习·pdf
WarPigs10 小时前
游戏框架笔记
笔记·游戏·架构
金心靖晨10 小时前
redis汇总笔记
数据库·redis·笔记
遇见尚硅谷11 小时前
C语言:20250714笔记
c语言·开发语言·数据结构·笔记·算法