【Python 学习笔记】json

How does python work with json?

1. Loading JSON Data

If you have JSON data as a string or in a file, you can load it into a Python dictionary (or list, if the JSON data is an array) using json.loads() (for strings) or json.load() (for files).

python 复制代码
import json

# From a JSON string
json_data = '{"name": "Alice", "age": 25, "city": "New York"}'
data = json.loads(json_data)
print(data)  # Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}

# From a JSON file
with open('data.json') as file:
    data = json.load(file)
    print(data)

To convert a Python dictionary (or other JSON-serializable Python objects) into a JSON string, you can use json.dumps(). For writing to a file, use json.dump().

python 复制代码
# Convert Python dict to JSON string
python_data = {"name": "Alice", "age": 25, "city": "New York"}
json_string = json.dumps(python_data)
print(json_string)  # Output: {"name": "Alice", "age": 25, "city": "New York"}

# Write to a JSON file
with open('output.json', 'w') as file:
    json.dump(python_data, file)

3. Handling Nested JSON

If the JSON data has nested objects, you can access them by chaining dictionary keys or list indices.

python 复制代码
nested_json = '{"person": {"name": "Alice", "age": 25}, "city": "New York"}'
data = json.loads(nested_json)
print(data['person']['name'])  # Output: Alice

4. Formatting Options

json.dumps() has optional parameters for pretty-printing, sorting keys, and customizing output format.

python 复制代码
# Pretty-print JSON
formatted_json = json.dumps(python_data, indent=4, sort_keys=True)
print(formatted_json)

Why Use sort_keys?

  • Readability: It makes it easier to locate keys in large JSON outputs.
  • Consistency: Sorted keys provide consistent output, which is useful when comparing JSON strings.
  • Debugging: Having a predictable order can simplify debugging by avoiding unnecessary differences due to key ordering.

example for JSON data is an array?

Certainly! JSON data can be structured as an array, where the top-level element is a list (array) of JSON objects, rather than a single JSON object. This is common when representing collections of data, like a list of users, products, or other similar records.

python 复制代码
[
    {
        "id": 1,
        "name": "Alice",
        "age": 25,
        "city": "New York"
    },
    {
        "id": 2,
        "name": "Bob",
        "age": 30,
        "city": "Chicago"
    },
    {
        "id": 3,
        "name": "Charlie",
        "age": 35,
        "city": "San Francisco"
    }
]

How to Work with JSON Arrays in Python

You can load this JSON array into Python and iterate over the list of dictionaries

python 复制代码
import json

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Parse JSON array into Python list
data = json.loads(json_array)

# Accessing elements
for person in data:
    print(f"Name: {person['name']}, Age: {person['age']}, City: {person['city']}")
python 复制代码
Name: Alice, Age: 25, City: New York
Name: Bob, Age: 30, City: Chicago
Name: Charlie, Age: 35, City: San Francisco

Key Points

  • JSON arrays are loaded as Python lists.
  • Each item in the array is typically a JSON object (dictionary in Python).
  • You can iterate through the list and access each dictionary by its keys.

how do you load this json_array to a table?

python 复制代码
import json
import pandas as pd

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Load JSON data from file
with open('data.json') as file:
    data = json.load(file)

# Parse JSON array into a Python list
data = json.loads(json_array)
python 复制代码
   id     name  age           city
0   1    Alice   25       New York
1   2      Bob   30        Chicago
2   3  Charlie   35  San Francisco

Summary

  • Use json.loads() to parse a JSON array from a string or json.load() from a file.
  • Convert the parsed JSON data to a DataFrame using pd.DataFrame(data).
  • Each JSON object in the array becomes a row in the DataFrame.

"Answer Generated by OpenAI's ChatGPT"

相关推荐
青椒大仙KI113 分钟前
24/11/5 算法笔记 DBSCAN聚类算法
笔记·算法·聚类
无厌3201 小时前
Django学习-项目部署
学习
无敌最俊朗@2 小时前
unity3d————球形插值知识点
开发语言·学习·unity·c#·游戏引擎
天天进步20155 小时前
X2JS: XML与JSON的完美转换工具
xml·json
瑞金彭于晏6 小时前
墨菲定律是什么?超详细+举例子+通俗易懂版!
笔记
我是汉堡请多指教6 小时前
网络学习笔记---客户端和服务端
笔记
FF_y7 小时前
Hive学习笔记
hive·笔记·学习
oliveira-time7 小时前
爬虫学习4
c++·爬虫·学习
程序猿锦鲤8 小时前
Stack Overflow 2023 年开发者调查报告!
java·开发语言·学习