【Python 学习笔记】json

How does python work with json?

1. Loading JSON Data

If you have JSON data as a string or in a file, you can load it into a Python dictionary (or list, if the JSON data is an array) using json.loads() (for strings) or json.load() (for files).

python 复制代码
import json

# From a JSON string
json_data = '{"name": "Alice", "age": 25, "city": "New York"}'
data = json.loads(json_data)
print(data)  # Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}

# From a JSON file
with open('data.json') as file:
    data = json.load(file)
    print(data)

To convert a Python dictionary (or other JSON-serializable Python objects) into a JSON string, you can use json.dumps(). For writing to a file, use json.dump().

python 复制代码
# Convert Python dict to JSON string
python_data = {"name": "Alice", "age": 25, "city": "New York"}
json_string = json.dumps(python_data)
print(json_string)  # Output: {"name": "Alice", "age": 25, "city": "New York"}

# Write to a JSON file
with open('output.json', 'w') as file:
    json.dump(python_data, file)

3. Handling Nested JSON

If the JSON data has nested objects, you can access them by chaining dictionary keys or list indices.

python 复制代码
nested_json = '{"person": {"name": "Alice", "age": 25}, "city": "New York"}'
data = json.loads(nested_json)
print(data['person']['name'])  # Output: Alice

4. Formatting Options

json.dumps() has optional parameters for pretty-printing, sorting keys, and customizing output format.

python 复制代码
# Pretty-print JSON
formatted_json = json.dumps(python_data, indent=4, sort_keys=True)
print(formatted_json)

Why Use sort_keys?

  • Readability: It makes it easier to locate keys in large JSON outputs.
  • Consistency: Sorted keys provide consistent output, which is useful when comparing JSON strings.
  • Debugging: Having a predictable order can simplify debugging by avoiding unnecessary differences due to key ordering.

example for JSON data is an array?

Certainly! JSON data can be structured as an array, where the top-level element is a list (array) of JSON objects, rather than a single JSON object. This is common when representing collections of data, like a list of users, products, or other similar records.

python 复制代码
[
    {
        "id": 1,
        "name": "Alice",
        "age": 25,
        "city": "New York"
    },
    {
        "id": 2,
        "name": "Bob",
        "age": 30,
        "city": "Chicago"
    },
    {
        "id": 3,
        "name": "Charlie",
        "age": 35,
        "city": "San Francisco"
    }
]

How to Work with JSON Arrays in Python

You can load this JSON array into Python and iterate over the list of dictionaries

python 复制代码
import json

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Parse JSON array into Python list
data = json.loads(json_array)

# Accessing elements
for person in data:
    print(f"Name: {person['name']}, Age: {person['age']}, City: {person['city']}")
python 复制代码
Name: Alice, Age: 25, City: New York
Name: Bob, Age: 30, City: Chicago
Name: Charlie, Age: 35, City: San Francisco

Key Points

  • JSON arrays are loaded as Python lists.
  • Each item in the array is typically a JSON object (dictionary in Python).
  • You can iterate through the list and access each dictionary by its keys.

how do you load this json_array to a table?

python 复制代码
import json
import pandas as pd

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Load JSON data from file
with open('data.json') as file:
    data = json.load(file)

# Parse JSON array into a Python list
data = json.loads(json_array)
python 复制代码
   id     name  age           city
0   1    Alice   25       New York
1   2      Bob   30        Chicago
2   3  Charlie   35  San Francisco

Summary

  • Use json.loads() to parse a JSON array from a string or json.load() from a file.
  • Convert the parsed JSON data to a DataFrame using pd.DataFrame(data).
  • Each JSON object in the array becomes a row in the DataFrame.

"Answer Generated by OpenAI's ChatGPT"

相关推荐
FITA阿泽要努力12 分钟前
动手体验:5min实现第一个智能体——1
json·api·agent·requests·查询天气·pprint·f-string
jimmyleeee16 分钟前
人工智能基础知识笔记三十四:提升RAG效果的几种技术
人工智能·笔记
wtsolutions29 分钟前
Using the Excel to JSON API - Programmatic Access for Developers
ui·json·xhtml
keep_moving_202334 分钟前
uvm_mem_mam介绍
学习
再卷还是菜40 分钟前
网安渗透学习小结--PHP源码调试方法,文件包含漏洞,PHP伪协议以及ctf题目解答
学习
Lonely 净土41 分钟前
渗透学习笔记-前四天
笔记·学习
蓝桉~MLGT43 分钟前
中级软考(软件工程师)第四章知识点——操作系统
学习
TensorFlowGAN43 分钟前
渗测随堂总结笔记 1(未完,一二章+三章 01)
笔记
摇滚侠1 小时前
尚硅谷 Nginx 教程(亿级流量 Nginx 架构设计),基本使用,笔记 6-42
java·笔记·nginx
SenChien1 小时前
Java大模型应用开发day06-天机ai-学习笔记
java·spring boot·笔记·学习·大模型应用开发·springai