【Python 学习笔记】json

How does python work with json?

1. Loading JSON Data

If you have JSON data as a string or in a file, you can load it into a Python dictionary (or list, if the JSON data is an array) using json.loads() (for strings) or json.load() (for files).

python 复制代码
import json

# From a JSON string
json_data = '{"name": "Alice", "age": 25, "city": "New York"}'
data = json.loads(json_data)
print(data)  # Output: {'name': 'Alice', 'age': 25, 'city': 'New York'}

# From a JSON file
with open('data.json') as file:
    data = json.load(file)
    print(data)

To convert a Python dictionary (or other JSON-serializable Python objects) into a JSON string, you can use json.dumps(). For writing to a file, use json.dump().

python 复制代码
# Convert Python dict to JSON string
python_data = {"name": "Alice", "age": 25, "city": "New York"}
json_string = json.dumps(python_data)
print(json_string)  # Output: {"name": "Alice", "age": 25, "city": "New York"}

# Write to a JSON file
with open('output.json', 'w') as file:
    json.dump(python_data, file)

3. Handling Nested JSON

If the JSON data has nested objects, you can access them by chaining dictionary keys or list indices.

python 复制代码
nested_json = '{"person": {"name": "Alice", "age": 25}, "city": "New York"}'
data = json.loads(nested_json)
print(data['person']['name'])  # Output: Alice

4. Formatting Options

json.dumps() has optional parameters for pretty-printing, sorting keys, and customizing output format.

python 复制代码
# Pretty-print JSON
formatted_json = json.dumps(python_data, indent=4, sort_keys=True)
print(formatted_json)

Why Use sort_keys?

  • Readability: It makes it easier to locate keys in large JSON outputs.
  • Consistency: Sorted keys provide consistent output, which is useful when comparing JSON strings.
  • Debugging: Having a predictable order can simplify debugging by avoiding unnecessary differences due to key ordering.

example for JSON data is an array?

Certainly! JSON data can be structured as an array, where the top-level element is a list (array) of JSON objects, rather than a single JSON object. This is common when representing collections of data, like a list of users, products, or other similar records.

python 复制代码
[
    {
        "id": 1,
        "name": "Alice",
        "age": 25,
        "city": "New York"
    },
    {
        "id": 2,
        "name": "Bob",
        "age": 30,
        "city": "Chicago"
    },
    {
        "id": 3,
        "name": "Charlie",
        "age": 35,
        "city": "San Francisco"
    }
]

How to Work with JSON Arrays in Python

You can load this JSON array into Python and iterate over the list of dictionaries

python 复制代码
import json

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Parse JSON array into Python list
data = json.loads(json_array)

# Accessing elements
for person in data:
    print(f"Name: {person['name']}, Age: {person['age']}, City: {person['city']}")
python 复制代码
Name: Alice, Age: 25, City: New York
Name: Bob, Age: 30, City: Chicago
Name: Charlie, Age: 35, City: San Francisco

Key Points

  • JSON arrays are loaded as Python lists.
  • Each item in the array is typically a JSON object (dictionary in Python).
  • You can iterate through the list and access each dictionary by its keys.

how do you load this json_array to a table?

python 复制代码
import json
import pandas as pd

# JSON array as a string
json_array = '''
[
    {"id": 1, "name": "Alice", "age": 25, "city": "New York"},
    {"id": 2, "name": "Bob", "age": 30, "city": "Chicago"},
    {"id": 3, "name": "Charlie", "age": 35, "city": "San Francisco"}
]
'''

# Load JSON data from file
with open('data.json') as file:
    data = json.load(file)

# Parse JSON array into a Python list
data = json.loads(json_array)
python 复制代码
   id     name  age           city
0   1    Alice   25       New York
1   2      Bob   30        Chicago
2   3  Charlie   35  San Francisco

Summary

  • Use json.loads() to parse a JSON array from a string or json.load() from a file.
  • Convert the parsed JSON data to a DataFrame using pd.DataFrame(data).
  • Each JSON object in the array becomes a row in the DataFrame.

"Answer Generated by OpenAI's ChatGPT"

相关推荐
傻小胖1 小时前
22.ETH-智能合约-北大肖臻老师客堂笔记
笔记·区块链·智能合约
1024小神1 小时前
SVG标签中path路径参数学习
学习
数据知道1 小时前
PostgreSQL实战:详解如何用Python优雅地从PG中存取处理JSON
python·postgresql·json
浅念-1 小时前
C++入门(2)
开发语言·c++·经验分享·笔记·学习
ZH15455891311 小时前
Flutter for OpenHarmony Python学习助手实战:面向对象编程实战的实现
python·学习·flutter
简佐义的博客1 小时前
生信入门进阶指南:学习顶级实验室多组学整合方案,构建肾脏细胞空间分子图谱
人工智能·学习
近津薪荼1 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
rannn_1112 小时前
【苍穹外卖|Day4】套餐页面开发(新增套餐、分页查询、删除套餐、修改套餐、起售停售)
java·spring boot·后端·学习
张人玉2 小时前
VisionPro 定位与卡尺测量学习笔记
笔记·学习·计算机视觉·vsionprp
songyuc2 小时前
【BiFormer】BiFormer: Vision Transformer with Bi-Level Routing Attention 译读笔记
笔记·transformer