【机器学习】连续属性离散化与sklearn.preprocessing.KBinsDiscretizer

1. KBinsDiscretizer的定义

KBinsDiscretizer是 scikit-learn 库中的一个类,用于将连续数据离散化成区间(bins)。这个类通过将特征值分配到 k 个等宽的区间(bins)来实现离散化,并且可以配置不同的编码方式来输出结果。

2. 主要参数

主要参数:

• n_bins:指定每个特征要产生的区间(bins)数量。如果是一个整数,则应用于所有特征;如果是一个数组,则每个元素对应一个特征的 bins 数量。

• encode:指定编码方式,可以是onehot、onehot-dense或ordinal。onehot会将结果用 one-hot 编码并返回稀疏矩阵;onehot-dense会返回密集数组;ordinal会返回整数形式的 bin 标识符。

• strategy:定义 bins 宽度的策略,可以是uniform、quantile或kmeans。uniform表示所有 bins 在每个特征中具有相同的宽度;quantile表示所有 bins 在每个特征中包含相同数量的点;kmeans基于每个特征上独立执行的 k-means 聚类过程定义 bins。

• dtype:输出的数据类型,支持 np.float32 和 np.float64。

• subsample:为了计算效率,最大样本数用于拟合模型。如果设置为 None,则使用所有训练样本来计算确定 binning 阈值的分位数。

• random_state:用于 subsampling 的随机数生成。

3. 属性

属性:

• bin_edges:每个 bin 的边界,包含不同形状的数组。

• n_bins:每个特征的 bins 数量,如果 bins 宽度太小(即,=1e-8),则会被移除并发出警告。

• n_features_in:在拟合过程中看到的特征数量。

• feature_names_in:在拟合过程中看到的特征名称,仅当 X 有全部为字符串的特征名称时定义。

功能:KBinsDiscretizer可以将连续特征转换为离散特征,这对于某些模型(如线性模型)可能有益,因为它们可能无法很好地处理连续数据。离散化后的数据可以用于引入非线性,增强模型的表现力和可解释性。

4. 示例

示例1:

sql 复制代码
from sklearn.preprocessing import KBinsDiscretizer
X = [[-2, 1, -4, -1],
     [-1, 2, -3, -0.5],
     [0, 3, -2, 0.5],
     [1, 4, -1, 2]]
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit(X)
Xt = est.transform(X)
print(Xt)

输出结果:

示例2:

sql 复制代码
import numpy as np
from sklearn.preprocessing import KBinsDiscretizer
X = np.array([[ -3., 5., 15 ],
              [  0., 6., 14 ],
          	  [  6., 3., 11 ]])
est =KBinsDiscretizer(n_bins=[3, 2, 2], encode='ordinal').fit(X)
Xs=est.transform(X)                      
print(Xs)

n_bins=[3, 2, 2] 表示:

  • 第一个特征(X 的第一列)被分成了3个箱子。
  • 第二个特征(X 的第二列)被分成了2个箱子。
  • 第三个特征(X 的第三列)也被分成了2个箱子。

输出结果:

这个类提供了一种灵活的方式来处理连续数据,使其适应于需要离散特征的机器学习算法。

相关推荐
你好~每一天2 小时前
2025 中小企业 AI 转型:核心岗技能 “怎么证、怎么用”?
人工智能·百度·数据挖掘·数据分析·职业·转行
YangYang9YangYan4 小时前
金融分析师技能提升路径与学习资源指南
金融·数据分析
weixin_525936334 小时前
金融大数据处理与分析
hadoop·python·hdfs·金融·数据分析·spark·matplotlib
唐兴通个人5 小时前
清华大学AI领导力AI时代领导力AI变革领导力培训师培训讲师专家唐兴通讲授数字化转型人工智能组织创新实践领导力国央企国有企业金融运营商制造业
人工智能·数据挖掘
码上地球5 小时前
大数据成矿预测系列(三) | 从统计模型到机器学习:为何机器学习是成矿预测的新前沿?
大数据·机器学习·数据挖掘
F_D_Z8 小时前
【Python】家庭用电数据分析Prophet预测
python·数据挖掘·数据分析·prophet
好开心啊没烦恼11 小时前
Python数据分析:使用爬虫从网页、社交媒体平台、论坛等公开资源提取中文和英文人名。
开发语言·爬虫·python·数据挖掘·数据分析
风遥~16 小时前
快速了解并使用Matplotlib库
人工智能·python·数据分析·matplotlib
sheji34161 天前
【开题答辩全过程】以 python杭州亚运会数据分析与可视化开题为例,包含答辩的问题和答案
开发语言·python·数据分析
毕设源码-赖学姐1 天前
【开题答辩全过程】以 Python在浙江省人口流动数据分析与城市规划建议的应用为例,包含答辩的问题和答案
开发语言·python·数据分析