Hive 查询各类型专利 Top 10 申请人及对应的专利申请数

目录

一、需求背景

二、实现思路

[三、Hive SQL 实现](#三、Hive SQL 实现)

语句解析

注意事项

四、结果展示

五、总结


在实际的数仓项目中,经常需要对数据进行统计分析,比如在专利管理系统中,需要对不同类型的专利进行申请人排名分析。本文将介绍如何在 Hive 中通过 SQL 查询实现各类型专利的 Top 10 申请人统计。

一、需求背景

假设有一张专利明细表 t_patent_detail,其中记录了专利号、专利名称、专利类型、申请时间、授权时间和申请人等字段。具体字段如下:

  • patent_id:专利号
  • patent_name:专利名称
  • patent_type:专利类型(包括发明创造、实用新型等)
  • aplly_date:申请时间
  • authorize_date:授权时间
  • apply_users:申请人(多个申请人用分号 ; 隔开)

t_patent_detail 数据样例如下图所示:

目标是查询出各类型专利中申请次数最多的 Top 10 申请人及对应的专利申请数量。

二、实现思路

  1. 申请人字段拆分apply_users 字段包含多个申请人,用分号 ; 分隔。需要先使用 LATERAL VIEW EXPLODE 函数将申请人字段拆分成多行,每行一个申请人。
  2. 分组统计:对每个专利类型中的申请人进行统计,计算每位申请人的专利申请次数。
  3. 排名 :使用 RANK() 函数对每个专利类型中的申请人申请次数进行排名,并筛选出前 10 名。

三、Hive SQL 实现

以下是实现该需求的 Hive SQL 查询语句:

sql 复制代码
WITH temp AS (
    -- 将申请人字段拆分成单独的记录
    SELECT d.patent_type, t1.coll AS apply_name
    FROM t_patent_detail d
    LATERAL VIEW EXPLODE(SPLIT(d.apply_users, ';')) t1 AS coll
)SELECT apply_name AS `申请人`, 
       COUNT(*) AS `专利申请数`, 
       RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) AS `专利数排名`
FROM temp
GROUP BY apply_name, patent_type
HAVING RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) <= 10;

语句解析

  1. LATERAL VIEW EXPLODE(SPLIT(d.apply_users, ';')) t1 AS coll :将 apply_users 字段中的申请人用分号 ; 分割开来,生成多行,每行包含一个申请人名字。

  2. COUNT(*):对每个申请人的专利数量进行计数,统计申请次数。

  3. RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) :通过 RANK() 函数对每个专利类型中的申请人按申请次数进行排名。

  4. HAVING 子句:筛选出每种专利类型中申请次数最多的前 10 名。

注意事项

  • 在使用 RANK() 时,确保对 PARTITION BYORDER BY 的理解。PARTITION BY patent_type 表示对不同的专利类型分别统计排名,ORDER BY COUNT(*) DESC 表示按照申请次数降序排列。
  • 使用 LATERAL VIEW EXPLODE 处理多值字段时要小心,可能会导致数据量增加,应确保 Hive 集群的性能可以承受。

四、结果展示

执行上述 SQL 查询语句后,将会得到如下的结果:

申请人 专利申请数 专利数排名
申请人A 15 1
申请人B 12 2
... ... ...

每种专利类型下的申请人按照申请次数降序排列,展示出 Top 10 的申请人及其申请次数。

五、总结

通过本文,我们学习了如何使用 Hive 的 SQL 来拆分多值字段并进行分组统计和排名。该方法适用于类似包含多值字段的分析需求,能够帮助我们快速得到各类型专利的 Top 10 申请人,为数据分析和决策提供支持。

相关推荐
RestCloud4 小时前
国产ETL数据集成软件和Informatica 相比如何
数据仓库·etl·数据集成工具·集成平台·informatica
尘客.5 小时前
DataX从Mysql导数据到Hive分区表案例
数据库·hive·mysql
yyywoaini~8 小时前
序列化和反序列化hadoop实现
hadoop·eclipse·php
薇晶晶8 小时前
hadoop中spark基本介绍
hadoop
hnlucky10 小时前
Windows 上安装下载并配置 Apache Maven
java·hadoop·windows·学习·maven·apache
尘世壹俗人17 小时前
hadoop.proxyuser.代理用户.授信域 用来干什么的
大数据·hadoop·分布式
2401_cf1 天前
为什么hadoop不用Java的序列化?
java·hadoop·eclipse
钊兵1 天前
hivesql是什么数据库?
大数据·hive
RestCloud1 天前
产品更新丨谷云科技 iPaaS 集成平台 V7.5 版本发布
数据仓库·系统安全·api·数字化转型·ipaas·数据集成平台·集成平台
RestCloud1 天前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
数据仓库·数据安全·etl·数据集成·elt·集成平台