Hive 查询各类型专利 Top 10 申请人及对应的专利申请数

目录

一、需求背景

二、实现思路

[三、Hive SQL 实现](#三、Hive SQL 实现)

语句解析

注意事项

四、结果展示

五、总结


在实际的数仓项目中,经常需要对数据进行统计分析,比如在专利管理系统中,需要对不同类型的专利进行申请人排名分析。本文将介绍如何在 Hive 中通过 SQL 查询实现各类型专利的 Top 10 申请人统计。

一、需求背景

假设有一张专利明细表 t_patent_detail,其中记录了专利号、专利名称、专利类型、申请时间、授权时间和申请人等字段。具体字段如下:

  • patent_id:专利号
  • patent_name:专利名称
  • patent_type:专利类型(包括发明创造、实用新型等)
  • aplly_date:申请时间
  • authorize_date:授权时间
  • apply_users:申请人(多个申请人用分号 ; 隔开)

t_patent_detail 数据样例如下图所示:

目标是查询出各类型专利中申请次数最多的 Top 10 申请人及对应的专利申请数量。

二、实现思路

  1. 申请人字段拆分apply_users 字段包含多个申请人,用分号 ; 分隔。需要先使用 LATERAL VIEW EXPLODE 函数将申请人字段拆分成多行,每行一个申请人。
  2. 分组统计:对每个专利类型中的申请人进行统计,计算每位申请人的专利申请次数。
  3. 排名 :使用 RANK() 函数对每个专利类型中的申请人申请次数进行排名,并筛选出前 10 名。

三、Hive SQL 实现

以下是实现该需求的 Hive SQL 查询语句:

sql 复制代码
WITH temp AS (
    -- 将申请人字段拆分成单独的记录
    SELECT d.patent_type, t1.coll AS apply_name
    FROM t_patent_detail d
    LATERAL VIEW EXPLODE(SPLIT(d.apply_users, ';')) t1 AS coll
)SELECT apply_name AS `申请人`, 
       COUNT(*) AS `专利申请数`, 
       RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) AS `专利数排名`
FROM temp
GROUP BY apply_name, patent_type
HAVING RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) <= 10;

语句解析

  1. LATERAL VIEW EXPLODE(SPLIT(d.apply_users, ';')) t1 AS coll :将 apply_users 字段中的申请人用分号 ; 分割开来,生成多行,每行包含一个申请人名字。

  2. COUNT(*):对每个申请人的专利数量进行计数,统计申请次数。

  3. RANK() OVER(PARTITION BY patent_type ORDER BY COUNT(*) DESC) :通过 RANK() 函数对每个专利类型中的申请人按申请次数进行排名。

  4. HAVING 子句:筛选出每种专利类型中申请次数最多的前 10 名。

注意事项

  • 在使用 RANK() 时,确保对 PARTITION BYORDER BY 的理解。PARTITION BY patent_type 表示对不同的专利类型分别统计排名,ORDER BY COUNT(*) DESC 表示按照申请次数降序排列。
  • 使用 LATERAL VIEW EXPLODE 处理多值字段时要小心,可能会导致数据量增加,应确保 Hive 集群的性能可以承受。

四、结果展示

执行上述 SQL 查询语句后,将会得到如下的结果:

申请人 专利申请数 专利数排名
申请人A 15 1
申请人B 12 2
... ... ...

每种专利类型下的申请人按照申请次数降序排列,展示出 Top 10 的申请人及其申请次数。

五、总结

通过本文,我们学习了如何使用 Hive 的 SQL 来拆分多值字段并进行分组统计和排名。该方法适用于类似包含多值字段的分析需求,能够帮助我们快速得到各类型专利的 Top 10 申请人,为数据分析和决策提供支持。

相关推荐
zhangjin12226 小时前
kettle从入门到精通 第九十四课 ETL之kettle MySQL Bulk Loader大批量高性能数据写入
大数据·数据仓库·mysql·etl·kettle实战·kettlel批量插入·kettle mysql
宅小海20 小时前
14 配置Hadoop集群-配置历史和日志服务
linux·服务器·hadoop
珹洺1 天前
Java-servlet(十)使用过滤器,请求调度程序和Servlet线程(附带图谱表格更好对比理解)
java·开发语言·前端·hive·hadoop·servlet·html
2401_871290581 天前
Hadoop 集群的常用命令
大数据·hadoop·分布式
chat2tomorrow1 天前
数据仓库是什么?数据仓库的前世今生 (数据仓库系列一)
大数据·数据库·数据仓库·低代码·华为·spark·sql2api
只因只因爆1 天前
mapreduce的工作原理
大数据·linux·hadoop·mapreduce
lix的小鱼1 天前
hadoop集群的常用命令
大数据·linux·hadoop
shouwangV61 天前
hive执行CTAS报错“Hive Runtime Error while processing row”
数据仓库·hive·hadoop
洋芋爱吃芋头1 天前
1. hadoop 集群的常用命令
hadoop
一个天蝎座 白勺 程序猿1 天前
大数据(4.1)Hive架构设计与企业级实战:从内核原理到性能巅峰优化,打造高效数据仓库
数据仓库·hive·hadoop