golang 实现比特币内核:实现基于椭圆曲线的数字签名和验证

我们已经展示了,给定生成点 G,并选择一个足够大的标量 e,我们可以轻松计算出 P=e*G,但是当你拥有 G 和 P 时,几乎不可能得到 e。这是椭圆曲线加密的基础。

所选择的标量 k 被称为私钥,而 Q 是公钥。注意,k 是一个256位的整数,而 Q 包含两部分:一个是 x 坐标,另一个是 y 坐标。

这种公钥加密的名称是椭圆曲线数字签名算法,简称 ECDSA。它涉及以下步骤:

选择一个标量 e,计算 P = e*G,其中 e 是私钥,P 是公钥,将 P 公之于众,所有人都可以知道它。

私钥的持有者随机选择两个有限域成员 u 和 v,并计算 k = u + ve,k 需要保密。

计算 R = k * G = (u + v*e)*G = u*G + v*(e*G) = u*G+v*P,我们仅使用 R 的 x 坐标,并将 x 的值命名为 r。

私钥持有者生成一条任意长度的消息文本(可以公开),并通过 sha256 或 md5 将其哈希为一个256位的数字,称该哈希结果为 z。

通过公式 s = (z + r*e) / k 计算一个数字 s(所有这些计算都基于模 p 的运算)。

将三元组 (z, s, r) 作为私钥持有者的签
相关推荐
FIN技术铺2 小时前
Redis集群模式之Redis Sentinel vs. Redis Cluster
数据库·redis·sentinel
SRY122404192 小时前
javaSE面试题
java·开发语言·面试
__AtYou__2 小时前
Golang | Leetcode Golang题解之第557题反转字符串中的单词III
leetcode·golang·题解
无尽的大道3 小时前
Java 泛型详解:参数化类型的强大之处
java·开发语言
ZIM学编程3 小时前
Java基础Day-Sixteen
java·开发语言·windows
放逐者-保持本心,方可放逐3 小时前
react 组件应用
开发语言·前端·javascript·react.js·前端框架
CodingBrother4 小时前
MySQL 中的 `IN`、`EXISTS` 区别与性能分析
数据库·mysql
一丝晨光4 小时前
编译器、IDE对C/C++新标准的支持
c语言·开发语言·c++·ide·msvc·visual studio·gcc
阮少年、4 小时前
java后台生成模拟聊天截图并返回给前端
java·开发语言·前端
代码小鑫4 小时前
A027-基于Spring Boot的农事管理系统
java·开发语言·数据库·spring boot·后端·毕业设计